Citation: Jie Shang, Hanlin Gong, Qian Zhang, Zhiliyu Cui, Shuangran Li, Ping Lv, Tiezheng Pan, Yan Ge, Zhenhui Qi. The dynamic covalent reaction based on diselenide-containing crown ether irradiated by visible light[J]. Chinese Chemical Letters, ;2021, 32(6): 2005-2008. doi: 10.1016/j.cclet.2020.11.043 shu

The dynamic covalent reaction based on diselenide-containing crown ether irradiated by visible light

    * Corresponding authors.
    E-mail addresses: ge@nwpu.edu.cn (Y. Ge), qi@nwpu.edu.cn (Z. Qi).
  • Received Date: 1 November 2020
    Revised Date: 15 November 2020
    Accepted Date: 19 November 2020
    Available Online: 8 December 2020

Figures(4)

  • A novel diselenide-containing crown ether (BC7Se2) was fabricated, which can polymerize to form cyclic oligomers through intermolecular dynamic covalent reaction by irradiation of visible light. The size and distribution of oligomers are related to the monomer concentration. The decomposition reaction of oligomers is controlled by topology and solvents. Furthermore, potassium cation can inhibit the polymerization of BC7Se2 and accelerate the decomposition of oligomers.
  • 加载中
    1. [1]

      (a) S. Ji, W. Cao, Y. Yu, H. Xu, Angew. Chem. Int. Ed. 53 (2014) 6781-6785;
      (b) P.T. Corbett, J. Leclaire, L. Vial, et al., Chem. Rev. 106 (2006) 3652-3711;
      (c) M.E. Belowich, J.F. Stoddart, Chem. Soc. Rev. 41 (2012) 2003-2024;
      (d) M. Mondal, N. Radeva, H. Köster, et al., Angew. Chem. Int. Ed. 53 (2014) 3259-3263.

    2. [2]

      (a) J.M.A. Carnall, C.A. Waudby, A.M. Belenguer, et al., Science 327 (2010) 1502-1506;
      (b) B. Liu, C.G. Pappas, E. Zangrando, et al., J. Am. Chem. Soc. 141 (2019) 1685-1689;
      (c) S. Ji, H.E. Mard, M. Smet, W. Dehaen, H. Xu, Sci. China Chem. 60 (2017) 1191-1196.

    3. [3]

      (a) K. Acharyya, P.S. Mukherjee, Angew. Chem. Int. Ed. 58 (2019) 8640-8653;
      (b) Y. Jin, C. Yu, R.J. Denman, W. Zhang, Chem. Soc. Rev. 42 (2013) 6634-6654;
      (c) M.E. Briggs, A.G. Slater, N. Lunt, et al., Chem. Commun. 51 (2015) 17390-17393.

    4. [4]

      (a) R.C. Boutelle, B.H. Northrop, J. Org. Chem. 76 (2011) 7994-8002;
      (b) X. Zheng, Y. Zhang, G. Wu, et al., Chem. Commun. 54 (2018) 3138-3141.

    5. [5]

      (a) F. Fan, S. Ji, C. Sun, et al., Angew. Chem. Int. Ed. 57 (2018) 16426-16430;
      (b) J. Li, J.M.A. Carnall, M.C.A. Stuart, S. Otto, Angew. Chem. Int. Ed. 50 (2011) 8384-8386;
      (c) B. Rasmussen, A. Sørensen, H. Gotfredsena, M. Pittelkow, Chem. Commun. 50 (2014) 3716-3718.

    6. [6]

      (a) Y. Yi, H. Xu, L. Wang, W. Cao, X. Zhang, Chem. Eur. J. 19 (2013) 9506-9510;
      (b) A. Sanchez-Sanchez, D.A. Fulton, J.A. Pomposo, Chem. Commun. 50 (2014) 1871-1874.

    7. [7]

      (a) S. Otto, R.L.E. Furlan, J.K.M. Sanders, Science 297 (2002) 590-593;
      (b) S. Ito, H. Takata, K. Ono, N. Iwasawa, Angew. Chem. Int. Ed. 52 (2013) 11045-11048;
      (c) A. Galán, E.C. Esudero-Adán, P. Ballester, Chem. Sci. 8 (2017) 7746-7750;
      (d) H. Löw, E. Mena-Osteritz, M. von Delius, Chem. Commun. 55 (2019) 11434-11437.

    8. [8]

      (a) M.J. Hansen, W.A. Velema, M.M. Lerch, W. Szymanski, B.L. Feringa, Chem. Soc. Rev. 44 (2015) 3358-3377;
      (b) M. Kathan, S. Hecht, Chem. Soc. Rev. 46 (2017) 5536-5550;
      (c) H. Frisch, D.E. Marschner, A.S. Goldmann, C. Barner-Kowollik, Angew. Chem. Int. Ed. 57 (2018) 2036-2045;
      (d) M. Herder, J.M. Lehn, J. Am. Chem. Soc. 140 (2018) 7647-7657;
      (e) H. Wu, Y. Chen, L. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 1280-1289;
      (f) Y. Zhou, H.Y. Zhang, Z.Y. Zhang, Y. Liu, J. Am. Chem. Soc. 139 (2017) 7168-7171;
      (g) H.J. Wang, H.Y. Zhang, H. Wu, et al., Chem. Commun. 55 (2019) 4499-4502;
      (h) H.G. Fu, H.Y. Zhang, H.Y. Zhag, Y. Liu, Chem. Commun. 55 (2019) 13462-13465.

    9. [9]

      (a) N.K. Kildahl, J. Chem. Educ. 72 (1995) 423-424;
      (b) J. Beld, K.J. Woycechowsky, D. Hilvert, Biochemistry 46 (2007) 5382-5390;
      (c) J. Beld, K.J. Woycechowsky, D. Hilvert, J. Biotechnol. 150 (2010) 481-489.

    10. [10]

      (a) P. Zhao, J. Xia, M. Cao, H. Xu, ACS Macro. Lett. 9 (2020) 163-168;
      (b) S. Ji, W. Cao, Y. Yu, H. Xu, Adv. Mater. 27 (2015) 7740-7745.

    11. [11]

      (a) C.J. Pedersen, J. Am. Chem. Soc. 89 (1967) 2495-2496;
      (b) Z. Liu, S.K.M. Nalluri, J.F. Stoddart, Chem. Soc. Rev. 46 (2017) 2459-2478;
      (c) Q. He, G.I. Vargas-Zúñiga, S.H. Kim, S.K. Kim, J.L. Sessler, Chem. Rev. 119 (2019) 9753-9835;
      (d) X. Yan, D. Xu, X. Chi, et al., Adv. Mater. 24 (2012) 362-369;
      (e) F. Wang, C. Han, C. He, et al., J. Am. Chem. Soc. 130 (2008) 11254-11255.

    12. [12]

      (a) J. Murray, K. Kim, T. Ogoshi, W. Yao, B.C. Gibb, Chem. Soc. Rev. 46 (2017) 2479-2496;
      (b) S.J. Barrow, S. Kasera, M.J. Rowland, J. del Barrio, O.A. Scherman, Chem. Rev. 115 (2015) 12320-12406.

    13. [13]

      (a) R. Kumar, A. Sharma, H. Singh, et al., Chem. Rev. 119 (2019) 9657-9721;
      (b) D.S. Guo, Y. Liu, Chem. Soc. Rev. 41 (2012) 5907-5921.

    14. [14]

      (a) H.Y. Zhou, Q.S. Zong, Y. Han, C.F. Chen, Chem. Commun. 56 (2020) 9916-9936;
      (b) X. Wang, F. Jia, L.P. Yang, H. Zhou, W. Jiang, Chem. Soc. Rev. 49 (2020) 4176-4188.

    15. [15]

      (a) K. Wada, T. Kakuta, T.A. Yamagishi, T. Ogoshi, Chem. Commun. 56 (2020) 4344-4347;
      (b) H. Zhang, Z. Liu, Y. Zhao, Chem. Soc. Rev. 47 (2018) 5491-5528;
      (c) T. Ogoshi, T.A. Yamagishi, Y. Nakamoto, Chem. Rev. 116 (2016) 7937-8002.

    16. [16]

      (a) S. Peng, Q. He, G.I. Vargas-ZúñIGA, et al., Chem. Soc. Rev. 49 (2020) 865-907;
      (b) D.H. Qu, Q.C. Wang, Q.W. Zhang, X. Mang, H. Tian, Chem. Rev. 115 (2015) 7543-7588.

    17. [17]

      (a) Y. Wu, M. Frasconi, W.G. Liu, et al., J. Am. Chem. Soc. 142 (2020) 11835-11846;
      (b) S. Erbas-Cakmak, D.A. Leigh, C.T. McTernan, A.L. Nussbaumer, Chem. Rev. 115 (2015) 10081-10206;
      (c) N.H. Evans, P.D. Beer, Chem. Soc. Rev. 43 (2014) 4658-4683;
      (d) S. Saha, J.F. Stoddart, Chem. Soc. Rev. 36 (2007) 77-92.

    18. [18]

      (a) D. Xia, P. Wang, X. Ji, N, et al., Chem. Rev. 120 (2020) 6070-6123;
      (b) G. Yu, K. Jie, F. Huang, Chem. Rev. 115 (2015) 7240-7303.

    19. [19]

      (a) H. Zheng, H. Ye, X. Yu, L. You, J. Am. Chem. Soc. 114 (2019) 8825-8833;
      (b) A. Chao, I. Negulescu, D. Zhang, Macromolecules 49 (2016) 6277-6284.

    20. [20]

      A. Rahimi, J.M. García, Nat. Rev. Chem. 1 (2017) 0046.
       

  • 加载中
    1. [1]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    2. [2]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    3. [3]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    4. [4]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    5. [5]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    6. [6]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    7. [7]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    8. [8]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    9. [9]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    10. [10]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    11. [11]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    12. [12]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    13. [13]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    14. [14]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    15. [15]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    16. [16]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    17. [17]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    18. [18]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    19. [19]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    20. [20]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

Metrics
  • PDF Downloads(5)
  • Abstract views(844)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return