Citation: Na Meng, Yufen Lv, Qishun Liu, Ruisheng Liu, Xiaohui Zhao, Wei Wei. Visible-light-induced three-component reaction of quinoxalin-2(1H)-ones, alkenes and CF3SO2Na leading to 3-trifluoroalkylated quinoxalin-2(1H)-ones[J]. Chinese Chemical Letters, ;2021, 32(1): 258-262. doi: 10.1016/j.cclet.2020.11.034 shu

Visible-light-induced three-component reaction of quinoxalin-2(1H)-ones, alkenes and CF3SO2Na leading to 3-trifluoroalkylated quinoxalin-2(1H)-ones

    * Corresponding author at: School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
    ** Corresponding author.
    E-mail addresses: xhzhao@nwipb.cas.cn (X. Zhao), weiweiqfnu@163.com (W. Wei).
  • Received Date: 16 September 2020
    Revised Date: 24 October 2020
    Accepted Date: 11 November 2020
    Available Online: 20 November 2020

Figures(7)

  • A facile and metal-free visible-light-enabled three-component reaction of quinoxalin-2(1H)-ones, alkenes and CF3SO2Na has been developed under air at room temperature. This photocatalytic tandem reaction using 4CzIPN as the photocatalyst and air as the green oxidant, provides a mild and environmentally friendly approach to access a series of 3-trifluoroalkylated quinoxalin-2(1H)-ones.
  • 加载中
    1. [1]

      (a) S.A.M. ElHawash, N.S. Habib, M.A. Kassem, Arch. Pharm. (Weinheim) 339 (2006) 564-571;
      (b) H.M. Refaat, A.A. Moneer, O.M. Khalil, Arch. Pharmacal Res. 27 (2004) 1093-1098;
      (c) X.Y. Qin, X. Hao, H. Han, et al., J. Med. Chem. 58 (2015) 1254-1267;
      (d) M.I. Shahin, D.A. Abou El Ella, N.S.M. Ismailand, K.A.M. Abouzid, Bioorg. Chem. 56 (2014) 16-26;
      (e) S.A. Galal, S.H.M. Khairat, F.A.F. Ragab, et al., Eur. J. Med. Chem. 86 (2014) 122-132.

    2. [2]

      (a) N. Udilova, A.V. Kozlov, W. Bieberschulte, et al., Biochem. Pharmacol. 65 (2003) 59-65;
      (b) H. Nohl, W. Bieberschulte, B. Dietrich, N. Udilova, A.V. Kozlov, BioFactors 19 (2003) 79-85;
      (c) S. Piras, M. Loriga, A. Carta, et al., J. Heterocycl. Chem. 43 (2006) 541-548;
      (d) V.A. Mamedov, A.A. Kalinin, A.T. Gubaidullin, I.A. Litvinov, Y.A. Levin, Chem. Heterocycl. Com+. 38 (2002) 1504-1510.

    3. [3]

      (a) A. Carrër, J.D. Brion, S. Messaoudi, M. Alami, Org. Lett. 15 (2013) 5606-5609;
      (b) K. Yin, R. Zhang, Org. Lett. 19 (2017) 1530-1533;
      (c) S. Paul, J.H. Ha, G.E. Park, Y.R. Lee, Adv. Synth. Catal. 359 (2017) 1515-1521;
      (d) J. Yuan, S. Liu, L. Qu, Adv. Synth. Catal. 359 (2017) 4197-4207;
      (e) L. Wang, P. Bao, W. Liu, et al., Chin. J. Org. Chem. 38 (2018) 3189-3192.

    4. [4]

      (a) J.W. Yuan, J.H. Fu, S.N. Liu, et al., Org. Biomol. Chem. 16 (2018) 3203-3212;
      (b) X. Zeng, C. Liu, X. Wang, et al., Org. Biomol. Chem. 15 (2017) 8929-8935;
      (c) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci China Chem. 62 (2019) 460-464;
      (d) P. Bao, F. Liu, Y. Lv, et al., Org. Chem. Front. 7 (2020) 492-498;
      (e) J. Lu, X.K. He, X. Cheng, et al., Adv. Synth. Catal. 362 (2020) 2178-2182;
      (f) L.Y. Xie, Y.S. Bai, X.Q. Xu, et al., Green Chem. 22 (2020) 1720-1725.

    5. [5]

      (a) S. Peng, D. Hu, J.L. Hu, et al., Adv. Synth. Catal. 361 (2019) 5721-5726;
      (b) J. Xu, H. Yang, H. Cai, et al., Org. Lett. 21 (2019) 4698-4702;
      (c) L.Y. Xie, Y.S. Liu, H.R. Ding, et al., Chin. J. Catal. 41 (2020) 1168-1173.

    6. [6]

      (a) Y. Li, M. Gao, L. Wang, X. Cui, Org. Biomol. Chem. 14 (2016) 8428-8432;
      (b) A. Gupta, M.S. Deshmukh, N. Jain, J. Org. Chem. 82 (2017) 4784-4792;
      (c) T. Guo, C.C. Wang, X.H. Fu, Y. Liu, P.K. Zhang, Org. Biomol. Chem. 17 (2019) 3333-3337;
      (d) Q. Yang, Y. Zhang, Q. Sun, et al., Adv. Synth. Catal. 360 (2018) 4509-4514;
      (e) J. Yuan, S. Liu, Y. Xiao, et al., Org. Biomol. Chem. 17 (2019) 876-884;
      (f) K.J. Li, K. Xu, Y.G. Liu, C.C. Zeng, B.G. Sun, Adv. Synth. Catal. 361 (2019) 1033-1041;
      (g) Q. Yang, Z. Yang, Y. Tan, et al., Adv. Synth. Catal. 361 (2019) 1662-1667.

    7. [7]

      (a) K.D. Mane, R.B. Kamble, G. Suryavanshi, New J. Chem. 43 (2019) 7403-7408;
      (b) J. Yuan, J. Fu, J. Yin, et al., Org. Chem. Front. 5 (2018) 2820-2828;
      (c) J. Fu, J. Yuan, Y. Zhang, et al., Org. Chem. Front. 5 (2018) 3382-3390;
      (d) Q. Yang, X. Han, J. Zhao, H.Y. Zhang, Y. Zhang, J. Org, Chem. 84 (2019) 11417-11424;
      (e) W. Wei, L. Wang, H. Yue, et al., ACS Sustainable Chem. Eng. 6 (2018) 17252-17257;
      (f) L.Y. Xie, L.L. Jiang, J.X. Tan, et al., ACS Sustainable. Chem. Eng. 7 (2019) 14153-14160.

    8. [8]

      (a) J. Wang, B. Sun, L. Zhang, et al., Org. Chem. Front. 7 (2020) 113-118;
      (b) L. Yang, P. Gao, X.H. Duan, Y.R. Gu, L.N. Guo, Org. Lett. 20 (2018) 1034-1037.

    9. [9]

      (a) M. Gao, Y. Li, L. Xie, R. Chauvin, X. Cui, Chem. Commun. 52 (2016) 2846-2849;
      (b) K.J. Li, Y.Y. Jiang, K. Xu, C.C. Zeng, B.G. Sun, Green Chem. 21 (2019) 4412-4421;
      (c) W.P. Mai, J.W. Yuan, J.L. Zhu, et al., ChemistrySelect 4 (2019) 11066-11070.

    10. [10]

      (a) L.Y. Xie, Y.L. Chen, L. Qin, et al., Org. Chem. Front. 6 (2019) 3950-3955;
      (b) J. Zhou, P. Zhou, T. Zhao, Q. Ren, J. Li, Adv. Synth. Catal. 361 (2019) 5371-5382.

    11. [11]

      (a) R.D. Chambers, Fluorine in Organic Chemistry, Blackwell, Oxford, 2004;
      (b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320-330;
      (c) A.C. Stuart, J.R. Tumbleston, H. Zhou, et al., J. Am. Chem. Soc. 135 (2013) 1806-1815;
      (d) I. Tirotta, V. Dichiarante, C. Pigliacelli, et al., Chem. Rev. 115 (2015) 1106-1129;
      (e) E.P. Gillis, K.J. Eastman, M.D. Hill, et al., J. Med. Chem. 58 (2015) 8315-8359;
      (f) Y. Zhou, J. Wang, Z. Gu, et al., Chem. Rev. 116 (2016) 422-518;
      (g) C. Zhang, Adv. Synth. Catal. 356 (2014) 2895-2906.

    12. [12]

      (a) L. Wang, Y. Zhang, F. Li, et al., Adv. Synth. Catal. 360 (2018) 3969-3977;
      (b) W. Xue, Y. Su, K.H. Wang, et al., Asian J. Org. Chem. 8 (2019) 887-892;
      (c) N. Meng, L. Wang, Q. Liu, et al., J. Org. Chem. 85 (2020) 6888-6896;
      (d) Z. Shao, S. Zhang, Y. Chen, et al., Tetrahedron 76 (2020) 131199.

    13. [13]

      (a) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev. 113 (2013) 5322-5363;
      (b) J.R. Chen, X.Q. Hu, L.Q. Lu, W.J. Xiao, Chem. Soc. Rev. 45 (2016) 2044-2056;
      (c) J. Chen, H.M. Guo, Q.Q. Zhao, J.R. Chen, W.J. Xiao, Chem. Commun. 54 (2018) 6780-6783;
      (d) X.C. Liu, K. Sun, X.L. Chen, et al., Adv. Synth. Catal. 361 (2019) 3712-3717;
      (e) D.Q. Dong, L.X. Li, G.H. Li, et al., Chin. J. Catal. 40 (2019) 1494-1498;
      (f) L.Y. Xie, T.G. Fang, J.X. Tan, et al., Green Chem. 21 (2019) 3858-3863;
      (g) J.R. Chen, D.M. Yan, Q. Wei, W.J. Xiao, ChemPhotoChem 1 (2017) 148-158.

    14. [14]

      (a) X. Gu, X. Li, Y. Chai, et al., Green Chem. 15 (2013) 357-361;
      (b) M.H. Huang, C.F. Zhu, C.L. He, et al., Org. Chem. Front. 5 (2018) 1643-1650;
      (c) J. Zhu, W.C. Yang, X. Wang, L. Wu, Adv. Synth. Catal. 360 (2018) 386-400;
      (d) Q.Q. Ge, J.S. Qian, J. Xuan, J. Org. Chem. 84 (2019) 8691-8701;
      (e) Z. Chen, W. Jin, C. Liu, Org. Chem. Front. 6 (2019) 841-845;
      (f) J.J. Zhang, Y.B. Cheng, X.H. Duan, Chin. J. Chem. 35 (2017) 311-315;
      (g) Y. Chen, L.Q. Lu, D.G. Yu, C.J. Zhu, W.J. Xiao, Sci. China Chem. 62 (2019) 24-57.

    15. [15]

      (a) Z. Wei, S. Qi, Y. Xu, et al., Adv. Synth. Catal. 361 (2019) 5490-5498;
      (b) J. Wang, B. Sun, L. Zhang, et al., Asian J. Org. Chem. 8 (2019) 1942-1946.

    16. [16]

      D. Zheng, A. Studer, Org. Lett. 21 (2019) 325-329.

    17. [17]

      (a) T.Y. Shang, L.H. Lu, Z. Cao, et al., Chem. Commun. 55 (2019) 5408-5419;
      (b) S. He, X. Chen, F. Zeng, et al., Chin. Chem. Lett. 31 (2020) 1863-1867;
      (c) Q. Ke, G. Yan, J. Yu, X. Wu, Org. Biomol. Chem. 17 (2019) 5863-5881.

    18. [18]

      (a) S. Jana, A. Verma, R. Kadu, S. Kumar, Chem. Sci. 8 (2017) 6633-6644;
      (b) L. Zhao, P. Li, H. Zhang, L. Wang, Org. Chem. Front. 6 (2019) 87-93;
      (c) L. Zhao, P. Li, X. Xie, L. Wang, Org. Chem. Front. 5 (2018) 1689-1697.

  • 加载中
    1. [1]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    2. [2]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    3. [3]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    4. [4]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    5. [5]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    6. [6]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    7. [7]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    8. [8]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    9. [9]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    12. [12]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    13. [13]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    14. [14]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    15. [15]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    16. [16]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    17. [17]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    18. [18]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    19. [19]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    20. [20]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

Metrics
  • PDF Downloads(26)
  • Abstract views(1030)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return