Citation: Penglong Wang, Qin Zhu, Yi Wang, Guixiang Zeng, Jun Zhu, Congqing Zhu. Carbon-halogen bond activation by a structurally constrained phosphorus(Ⅲ) platform[J]. Chinese Chemical Letters, ;2021, 32(4): 1432-1436. doi: 10.1016/j.cclet.2020.11.005 shu

Carbon-halogen bond activation by a structurally constrained phosphorus(Ⅲ) platform

    *Corresponding authors.
    E-mail addresses: gxzeng@nju.edu.cn (G. Zeng), jun.zhu@xmu.edu.cn (J. Zhu), zcq@nju.edu.cn (C. Zhu).
    1 These authors contributed equally to this work.
  • Received Date: 14 September 2020
    Revised Date: 29 October 2020
    Accepted Date: 2 November 2020
    Available Online: 4 November 2020

Figures(7)

  • The σ-bond activation by main group element has received enormous attention from theoretical and experimental chemists. Here, the reaction of C–X (X=Cl, Br, Ⅰ) bonds in benzyl and allyl halides with a pincer-type phosphorus(Ⅲ) species was reported. A series of structurally robust phosphorus(Ⅴ) compounds were formed via the formal oxidative addition reactions of C–X bonds to the phosphorus(Ⅲ) center. Density functional theory calculations show that the nucleophilic addition process is more favorable than the direct oxidative addition mechanism. Isomerization of bent structures of phosphorus(Ⅲ) compound to poorly nucleophilic compounds to undergo further C–X bond activation can be rationalized by frontier molecule orbital analysis. This study not only provides a deep understanding of the reactivity of phosphorus(Ⅲ) species but also demonstrates a potential of main group elements for the small-molecule activation.
  • 加载中
    1. [1]

      L. Horner, W. Jurgeleit, K. Klupfel, Liebigs Ann. Chem. 591(1955) 108-117.  doi: 10.1002/jlac.19555910107

    2. [2]

      R.F. Hudson, Structure and Mechanism in Organophosphorus Chemistry, Academic Press, New York, 1965.

    3. [3]

      (a) X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 34 (2001) 535-544;
      (b) J.L. Methot, W.R. Roush, Adv. Synth. Catal. 346 (2004) 1035-1050;
      (c) L.W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 37 (2008) 1140-1152;
      (d) H. Guo, Y.C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 118 (2018) 10049-10293;
      (e) G. Tao, Z. Duan, F. Mathey, Org. Lett. 21 (2019) 2273-2276;
      (f) L. Zhang, C. Liu, Z. Duan, F. Mathey, Eur. J. Inorg. Chem. (2017) 2504-2509;
      (g) R. Tian, H. Liu, Z. Duan, F. Mathey, J. Am. Chem. Soc. 131 (2009) 16008-16009.

    4. [4]

      (a) P.C.J. Kamer, P.W.N.M. van Leeuwen, Phosphorus(Ⅲ) Ligands in Homogeneous Catalysis: Design and Synthesis, Wiley, Hoboken, NJ, 2012;
      (b) V. Nair, R.S. Menon, A.R. Sreekanth, N. Abhilash, A.T. Biju, Acc. Chem. Res. 39 (2006) 520-530;
      (c) L.W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 37 (2008) 1140-1152.

    5. [5]

      D.G. Gilheany, Chem. Rev. 94(1994) 1339-1374.  doi: 10.1021/cr00029a008

    6. [6]

      (a) X. Lu, Y. Du, C. Lu, Pure Appl. Chem. 77 (2005) 1985-1990;
      (b) S.E. Denmark, G.L. Beutner, Angew. Chem. Int. Ed. 47 (2008) 1560-1638;
      (c) X. Zeng, Chem. Rev. 113 (2013) 6864-6900;
      (d) T. Wang, X. Han, F. Zhong, W. Yao, Y. Lu, Acc. Chem. Res. 49 (2016) 1369-1378.

    7. [7]

      (a) A. Brand, W. Uhl, Chem. Eur. J. 25 (2019) 1391-1404;
      (b) E. Coyle, C. O'Brien, Nat. Chem. 4 (2012) 779-780.

    8. [8]

      K. Lee, A.V. Blake, A. Tanushi, et al., Angew. Chem. Int. Ed. 58(2019) 6993-6998.  doi: 10.1002/anie.201901779

    9. [9]

      (a) S.A. Culley, A.J. Arduengo Ⅲ, J. Am. Chem. Soc. 106 (1984) 1164-1165;
      (b) A.J. Arduengo Ⅲ, C.A. Stewart, F. Davidson, et al., J. Am. Chem. Soc. 109 (1987) 627-647.

    10. [10]

      (a) N.L. Dunn, M. Ha, A.T. Radosevich, J. Am. Chem. Soc. 134 (2012) 11330-11333;
      (b) S.M. McCarthy, Y.C. Lin, D. Devarajan, et al., J. Am. Chem. Soc. 136 (2014) 4640-4650;
      (c) W. Zhao, S.M. McCarthy, T.Y. Lai, H.P. Yennawar, A.T. Radosevich, J. Am. Chem. Soc. 136 (2014) 17634-17644;
      (d) K.D. Reichl, N.L. Dunn, N.J. Fastuca, A.T. Radosevich, J. Am. Chem. Soc. 137 (2015) 5292-5295;
      (e) Y.C. Lin, E. Hatzakis, S.M. McCarthy, et al., J. Am. Chem. Soc. 139 (2017) 6008-6012;
      (f) T.V. Nykaza, T.S. Harrison, A. Ghosh, R.A. Putnik, A.T. Radosevich, J. Am. Chem. Soc. 139 (2017) 6839-6842;
      (g) T.V. Nykaza, A. Ramirez, T.S. Harrison, M.R. Luzung, A.T. Radosevich, J. Am. Chem. Soc. 140 (2018) 3103-3113;
      (h) A. Tanushi, A.T. Radosevich, J. Am. Chem. Soc. 140 (2018) 8114-8118;
      (i) T.V. Nykaza, J.C. Cooper, G. Li, et al., J. Am. Chem. Soc. 140 (2018) 15200-15205.

    11. [11]

      (a) T.P. Robinson, D.M. De Rosa, S. Aldridge, J.M. Goicoechea, Angew. Chem. Int. Ed. 54 (2015) 13758-13763;
      (b) T.P. Robinson, S.K. Lo, D. De Rosa, S. Aldridge, J.M. Goicoechea, Chem. Eur. J. 22 (2016) 15712-15724;
      (c) T.P. Robinson, D. De Rosa, S. Aldridge, J.M. Goicoechea, Chem. Eur. J. 23 (2017) 15455-15465.

    12. [12]

      (a) J. Cui, Y. Li, R. Ganguly, et al., J. Am. Chem. Soc. 136 (2014) 16764-16767;
      (b) J. Cui, Y. Li, R. Ganguly, R. Kinjo, Chem. Eur. J. 22 (2016) 9976-9985.

    13. [13]

      (a) A. Murillo, L.M. Chiquette, P. Joesphnathan, R. Contreras, Phosphorus Sulfur Silicon Relat, Elem. 53 (1990) 87-101;
      (b) M. Driess, N. Muresan, K. Merz, M. Päch, Angew. Chem. Int. Ed. 44 (2005) 6734-6737;
      (c) S. Volodarsky, R. Dobrovetsky, Chem. Commun. 54 (2018) 6931-6934;
      (d) A. Hentschel, A. Brand, P. Wegener, W. Uhl, Angew. Chem. Int. Ed. 57 (2018) 832-835.

    14. [14]

      Q. Zhu, P. Wang, J. Zhu, C. Zhu, G. Zeng, Inorg. Chem. 59(2020) 15636-15645.  doi: 10.1021/acs.inorgchem.0c01920

    15. [15]

      (a) G. Zeng, S. Maeda, T. Taketsugu, S. Sakaki, J. Am. Chem. Soc. 138 (2016) 13481-13484;
      (b) G. Zeng, S. Maeda, T. Taketsugu, S. Sakaki, ACS Catal. 6 (2016) 4859-4870;
      (c) A. Pal, K. Vanka, Inorg. Chem. 55 (2016) 558-565;
      (d) G. Zeng, S. Maeda, T. Taketsugu, S. Sakaki, Angew. Chem. Int. Ed. 53 (2014) 4633-4637.

    16. [16]

      A.W. Addison, T.N. Rao, Van J. Rijn, G.C. Veschoor, J. Reedijk, J. Chem. Soc., Dalton Trans. (1984) 1349-1356.

    17. [17]

      J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, 4th ed., HarperCollins College Publishers, New York, 1993.

    18. [18]

      E.D. Glendening, J.K. Badenhoop, A.E. Reed, et al., Natural Bond Orbital 7.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013. http://nbo7.chem.wisc.edu/.

    19. [19]

      F.M. Bickelhaupt, K.N. Houk, Angew. Chem. Int. Ed. 56(2017) 10070-10086.  doi: 10.1002/anie.201701486

  • 加载中
    1. [1]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    2. [2]

      Luyun ZhangDing LiuHuri PiaoZhenhua JiaFen-Er Chen . A modified Bis-OPNN phosphorus ligand for Rh-catalyzed linear-selective hydroformylation of alkenes. Chinese Chemical Letters, 2025, 36(7): 110640-. doi: 10.1016/j.cclet.2024.110640

    3. [3]

      Tian-Zhang WangLe-Yu TangYu-Qiu GuanLingfei HuGang LuYu-Feng Liang . Nickel-catalyzed reductive alkynylation of ketoimines via unstrained C–C bond activation. Chinese Chemical Letters, 2025, 36(11): 111050-. doi: 10.1016/j.cclet.2025.111050

    4. [4]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    5. [5]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    6. [6]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    7. [7]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    8. [8]

      Liang LouXuncheng LiuYuanyu WangTao HuZhongjie WangHouqiang ShiJunkai XiongSiqi JingLiankang YeQihui GuoXiang Ge . Achieving reusability of leachate for multi-element recovery of the discarded LiNixCoyMn1-x-yO2 cathode by regulating the co-precipitation coefficient. Chinese Chemical Letters, 2025, 36(5): 109726-. doi: 10.1016/j.cclet.2024.109726

    9. [9]

      Junyou DingXiaotong LiHongmin LinBochao YeXing ZhouFeihu CuiYingming PanHaitao Tang . Highly regioselective hydrogermylation of unsaturated C-C bonds over ligand-control single atom palladium catalysts. Chinese Chemical Letters, 2025, 36(11): 111286-. doi: 10.1016/j.cclet.2025.111286

    10. [10]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    11. [11]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    12. [12]

      Xiuxiu JiaTao YinNianpeng LiHua ZhangAnxian ShiAbdukader AbdukayumSanshuang GaoGuangzhi Hu . Reticulated lanthanum (La) carbonate-carbon composite for efficient phosphorus removal from eutrophic wastewater. Chinese Chemical Letters, 2025, 36(6): 110398-. doi: 10.1016/j.cclet.2024.110398

    13. [13]

      Long HuangJian PuYunyu ZhaoXiangxiang FangYingjian YuYuan LiJinyan MaYuejin ZhuFang HuChuang Yue . Phosphorus-doped carbon as an effective protective layer for advanced aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110989-. doi: 10.1016/j.cclet.2025.110989

    14. [14]

      Bingbing DongJunmin ZhangXiang-Yu YeXuan HuangYonggui Robin Chi . Catalytic construction of P-stereogenic center via phosphorus-centered nucleophilic substitution. Chinese Chemical Letters, 2025, 36(9): 111052-. doi: 10.1016/j.cclet.2025.111052

    15. [15]

      Bo YangSuqiong YanShirong BanWei Huang . New horizons in phosphorus-based emitters: From circularly polarized fluorescence to room-temperature phosphorescence. Chinese Chemical Letters, 2025, 36(11): 110837-. doi: 10.1016/j.cclet.2025.110837

    16. [16]

      Congzhao DongYajun ZhangYingpu BiZeyu LiYong Ding . Band structure engineering of phosphorus doped Ta3N5 for efficient photoelectrochemical water oxidation. Chinese Chemical Letters, 2025, 36(12): 111449-. doi: 10.1016/j.cclet.2025.111449

    17. [17]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    18. [18]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    19. [19]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    20. [20]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

Metrics
  • PDF Downloads(4)
  • Abstract views(1366)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return