Citation: Xiaomeng Liu, Qishun Huang, Jun Wang, Lanling Zhao, Haoran Xu, Qing Xia, Deyuan Li, Lei Qian, Huaisheng Wang, Jintao Zhang. In-situ deposition of Pd/Pd4S heterostructure on hollow carbon spheres as efficient electrocatalysts for rechargeable Li-O2 batteries[J]. Chinese Chemical Letters, ;2021, 32(6): 2086-2090. doi: 10.1016/j.cclet.2020.11.003 shu

In-situ deposition of Pd/Pd4S heterostructure on hollow carbon spheres as efficient electrocatalysts for rechargeable Li-O2 batteries

    * Corresponding author.
    ** Corresponding author at: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Ji'nan 250061, China.
    E-mail addresses: jw707@sdu.edu.cn (J. Wang), jtzhang@sdu.edu.cn (J. Zhang).
  • Received Date: 29 September 2020
    Revised Date: 30 October 2020
    Accepted Date: 2 November 2020
    Available Online: 4 November 2020

Figures(4)

  • The sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have always restricted the development of lithium oxygen batteries (LOBs). Herein, hollow carbon spheres loaded with Pd/Pd4S heterostructure (Pd/Pd4S@HCS) were successfully prepared via the in-situ deposition to improve the electrocatalytic activities for both ORR and OER in LOBs. With the well-dispersed Pd/Pd4S nanoparticles, the hierarchical composite with large specific surface area offers favorable transport channels for ions, electron and oxygen. Especially, the Pd/Pd4S nanoparticles could exhibit excellent electrochemical performance for ORR and OER due to their intrinsic catalytic property and interfacial effect from the heterostructure. Therefore, the LOBs with Pd/Pd4S@HCS as cathode catalyst show improved specific capacities, good rate ability and stable cycling performance.
  • 加载中
    1. [1]

      (a) P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat. Mater. 11 (2012) 19-29;
      (b) W. Chen, Y.F. Gong, J.H. Liu, Chin. Chem. Lett. 28 (2017) 709-718.

    2. [2]

      (a) A.C. Luntz, B.D. McCloskey, Chem. Rev. 114 (2014) 11721-11750;
      (b) T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, J. Am. Chem. Soc. 128 (2006) 1390-1393;
      (c) C.L.M. Wu, C.B. Liao, L. Li, J. Yang, Chin. Chem. Lett. 27 (2016) 1485-1489.

    3. [3]

      (a) H.D. Lim, B. Lee, Y. Bae, et al., Chem. Soc. Rev. 46 (2017) 2873-2888;
      (b) B. Liu, Y.L. Sun, L. Liu, S. Xu, X.B. Yan, Adv. Funct. Mater. 28 (2018)1704973.

    4. [4]

      (a) X.D. Lin, R.M. Yuan, S.R. Cai, et al., Adv. Energy Mater. 8 (2018) 1800089;
      (b) C. Zhu, Y. Wang, L. Shuai, et al., Chin. Chem. Lett. 31 (2020) 1997-2002.

    5. [5]

      (a) S.M. Xu, X. Liang, Z.C. Ren, K.X. Wang, J.S. Chen, Angew. Chem. Int. Ed. 57 (2018) 6825-6829;
      (b) Y. Lin, B. Moitoso, C. Martinez-Martinez, et al., Nano Lett. 17 (2017) 3252-3260;
      (c) Y.J. Wang, H.B. Fan, A. Ignaszak, et al., Chem. Eng. J. 348 (2018) 416-437;
      (d) Z.W. Chang, J.J. Xu, X.B. Zhang, Adv. Energy Mater. 7 (2017) 1700875;
      (e) H. Liu, X.X. Liu, W. Li, et al., Adv. Energy Mater. 7 (2017) 1700283.

    6. [6]

      (a) M.M.O. Thotiyl, S.A. Freunberger, Z.Q. Peng, P.G. Bruce, J. Am. Chem. Soc. 135 (2013) 494-500;
      (b) B.D. McCloskey, A. Speidel, R. Scheffler, et al., J. Phys. Chem. Lett. 3 (2012)997-1001.

    7. [7]

      (a) J. Wang, L.L. Liu, S.L. Chou, H.K. Liu, J.Z. Wang, J. Mater. Chem. A 5 (2017) 1462-1471;
      (b) X.Y. Lu, Y. Yin, L. Zhang, et al., Nano Energy 30 (2016) 69-76;
      (c) X.Y. Lu, J.W. Deng, W.P. Si, et al., Adv. Sci. 2 (2015) 1500113.

    8. [8]

      (a) W.B. Luo, X.W. Gao, S.L. Chou, J.Z. Wang, H.K. Liu, Adv. Mater. 27 (2015) 6862-6869;
      (b) B.K. Ko, M.K. Kim, S.H. Kim, et al., J. Mol. Catal. A: Chem. 379 (2013) 9-14.

    9. [9]

      (a) F.L. Meng, Z.W. Chang, J.J. Xu, X.B. Zhang, J.M. Yan, Mater. Horiz. 5 (2018) 298-302;
      (b) L.M. Leng, X.Y. Zeng, H.Y. Song, et al., J. Mater. Chem. A 3 (2015) 15626-15632.

    10. [10]

      (a) J. Jiang, Y.Y. Li, J.P. Liu, et al., Adv. Mater. 24 (2012) 5166-5180;
      (b) X.H. Rui, H.T. Tan, Q.Y. Yan, Nanoscale 6 (2014) 9889-9924;
      (c) Y.C. Liu, Y. Li, H.Y. Kang, T. Jin, L.F. Jiao, Mater. Horiz. 3 (2016) 402-421.

    11. [11]

      R. Gronvoled, R. Rost, Acta Crystallogr. 15 (1962) 11-13.  doi: 10.1107/S0365110X62000031

    12. [12]

      C. Du, P. Li, F.L. Yang, et al., ACS Appl. Mater. Interfaces 10 (2018) 753-761.  doi: 10.1021/acsami.7b16359

    13. [13]

      J.R. Shen, H.T. Wu, W. Sun, et al., J. Mater. Chem. A 7 (2019) 10662-10671.  doi: 10.1039/C9TA00543A

    14. [14]

      L.L. Long, A.Y. Zhang, Y.X. Huang, X. Zhang, H.Q. Yu, J. Mater. Chem. A 3 (2015) 4301-4306.  doi: 10.1039/C4TA05818F

    15. [15]

      (a) P. Wang, Y.Y. Ren, R.T. Wang, et al., Nat. Commun. 11 (2020) 1576;
      (b) B. He, J. Wang, J.Q. Liu, et al., Adv. Energy Mater. 10 (2020) 1904262.

    16. [16]

      (a) M.W. Yuan, C.Y. Nan, Y. Yang, et al., ACS Omega 2 (2017) 4269-4277;
      (b) M.W. Yuan, S.T. Zhang, L. Liu, et al., ACS Sustain. Chem. Eng. 7 (2019) 17464-17473;
      (c) M.W. Yuan, R. Wang, W.B. Fu, et al., ACS Appl. Mater. Interfaces 11 (2019) 11403-11413.

    17. [17]

      R.R. Mitchell, B.M. Gallant, Y. Shao-Horn, C.V. Thompson, J. Phys. Chem. Lett. 4 (2013) 1060-1064.  doi: 10.1021/jz4003586

    18. [18]

      (a) J.S. Hummelshoj, A.C. Luntz, J.K. Norskov, J. Chem. Phys. 138 (2013) 034703;
      (b) Z.Y. Lyu, Y. Zhou, W.R. Dai, et al., Chem. Soc. Rev. 46 (2017) 6046-6072;
      (c) A.J. Hu, W.Q. Lv, T.Y. Lei, et al., ACS Nano 14 (2020) 3490-3499.

    19. [19]

      N.B. Aetukuri, B.D. McCloskey, J.M. Garcia, et al., Nat. Chem. 7 (2015) 50-56.  doi: 10.1038/nchem.2132

    20. [20]

      Q.S. Huang, F. Dang, H.T. Zhu, et al., J. Power Sources 451 (2020) 50-56.

  • 加载中
    1. [1]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    4. [4]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    5. [5]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    6. [6]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    7. [7]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    8. [8]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    9. [9]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    10. [10]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    11. [11]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    12. [12]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    13. [13]

      Dai-Huo LiuAo WangHong-Yan LüXing-Long WuDan LuoWen-Hao LiJin-Zhi GuoHaozhen DouQianyi MaZhongwei ChenIn situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285

    14. [14]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    15. [15]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    16. [16]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    17. [17]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    20. [20]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

Metrics
  • PDF Downloads(3)
  • Abstract views(554)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return