Citation: Rui-Hua Liu, Qi-Chao Shan, Ya Gao, Teck-Peng Loh, Xu-Hong Hu. Access to multi-functionalized oxazolines via silver-catalyzed heteroannulation of enamides with sulfoxonium ylides[J]. Chinese Chemical Letters, ;2021, 32(4): 1411-1414. doi: 10.1016/j.cclet.2020.10.007 shu

Access to multi-functionalized oxazolines via silver-catalyzed heteroannulation of enamides with sulfoxonium ylides

    *Corresponding authors at: Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
    E-mail addresses: teckpeng@ntu.edu.sg (T.-P. Loh), ias_xhhu@njtech.edu.cn (X.-H. Hu).
    1 These authors contributed equally to this work.
  • Received Date: 2 August 2020
    Revised Date: 8 October 2020
    Accepted Date: 10 October 2020
    Available Online: 12 October 2020

Figures(7)

  • Disclosed herein is an efficient Ag-catalyzed [4+1] heteroannulation reaction of enamides with α-carbonyl sulfoxonium ylides. The diastereoselective transformation provides a practical access to a diverse range of multi-functionalized oxazoline derivatives. The synthetic utility of the resultant tetra-substituted oxazolines is further demonstrated by a series of useful manipulations into valuable building blocks of pharmaceutical relevance.
  • 加载中
    1. [1]

      (a) X.L. Sun, Y. Tang, Acc. Chem. Res. 41 (2008) 937-948;
      (b) L.Q. Lu, J.R. Chen, W.J. Xiao, Acc. Chem. Res. 45 (2012) 1278-1293;
      (c) G. Li, L. Wang, Y. Huang, Chin. J. Org. Chem. 33 (2013) 1900-1918;
      (d) L.Q. Lu, T.R. Li, Q. Wang, W.J. Xiao, Chem. Soc. Rev. 46 (2017) 4135-4149;
      (e) D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 119 (2019) 8701-8780.

    2. [2]

      (a) Q. Wang, T.R. Li, L.Q. Lu, et al., J. Am. Chem. Soc. 138 (2016) 8360-8363;
      (b) Y. Xu, G. Zheng, X. Yang, X. Li, Chem. Commun. 54 (2018) 670-673;
      (c) X. Wu, H. Xiong, S. Sun, J. Cheng, Org. Lett. 20 (2018) 1396-1399;
      (d) D. Clare, B.C. Dobson, P.A. Inglesby, C. Aïssa, Angew. Chem. Int. Ed. 58 (2019) 16198-16202;
      (e) Z. Tang, Y. Zhou, Q. Song, Org. Lett. 21 (2019) 5273-5276;
      (f) X. Chen, M. Wang, X. Zhang, X. Fan, Org. Lett. 21 (2019) 2541-2545;
      (g) S. Hu, S. Du, Z. Yang, L. Ni, Z. Chen, Adv. Synth. Catal. 361 (2019) 3124-3136;
      (h) Z. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374-1378;
      (i) T.B. Hua, C. Xiao, Q.Q. Yang, J.R. Chen, Chin. Chem. Lett. 31 (2020) 311-323;
      (j) Y. Kommagalla, S. Ando, N. Chatani, Org. Lett. 22 (2020) 1375-1379;
      (k) S. Zhu, K. Shi, H. Zhu, et al., Org. Lett. 22 (2020) 1504-1509.

    3. [3]

      (a) R. Matsubara, S. Kobayashi, Acc. Chem. Res. 41 (2008) 292-301;
      (b) D.R. Carbery, Org. Biomol. Chem. 6 (2008) 3455-3460;
      (c) K. Gopalaiah, H.B. Kagan, Chem. Rev. 111 (2011) 4599-4657.

    4. [4]

      (a) M.X. Wang, Chem. Commun. 51 (2015) 6039-6049;
      (b) X.M. Xu, L. Zhao, J. Zhu, M.X. Wang, Angew. Chem. Int. Ed. 55 (2016) 3799-3803;
      (c) J. Wu, C. Zhao, J. Wang, J. Am. Chem. Soc. 138 (2016) 4706-4709;
      (d) M.N. Zhao, L. Yu, R.R. Hui, et al., ACS Catal. 6 (2016) 3473-3477.

    5. [5]

      (a) J.R. Chen, X.Q. Hu, L.Q. Lu, W.J. Xiao, Chem. Rev. 115 (2015) 5301-5365;
      (b) C. Zhu, Y. Ding, L.W. Ye, Org. Biomol. Chem. 13 (2015) 2530-2536;
      (c) P. Sivaguru, S. Cao, K.R. Babu, X. Bi, Acc. Chem. Res. 53 (2020) 662-675.

    6. [6]

      (a) A.W. Goering, R.A. McClure, J.R. Doroghazi, et al., ACS Cent. Sci. 2 (2016) 99-108;
      (b) J.B. Neupana, R.P. Neupane, Y. Luo, et al., Org. Lett. 21 (2019) 8449-8453;
      (c) J. Maier, F.P. Mayer, S.D. Brandt, H.H. Sitte, ACS Chem. Neurosci. 9 (2018) 2484-2502;
      (d) L. Liu, L. Yin, H. Bian, N. Zhang, Chin. Chem. Lett. 31 (2020) 501-504.

    7. [7]

      (a) G. Helmchen, A. Pfaltz, Acc. Chem. Res. 33 (2000) 336-345;
      (b) G.C. Hargaden, P.J. Guiry, Chem. Rev. 109 (2009) 2505-2550.

    8. [8]

      (a) P. Wipf, C.P. Miller, Tetrahedron Lett. 33 (1992) 907-910;
      (b) A.J. Phillips, Y. Uto, P. Wipf, M.J. Reno, D.R. Williams, Org. Lett. 2 (2000) 1165-1168.

    9. [9]

      (a) S. Rajaram, M.S. Sigman, Org. Lett. 4(2002) 3399-3401;
      (b) T. Ohshima, T. Iwasaki, K. Mashima, Chem. Commun. (2006) 2711-2713;
      (c) M. Trose, F. Lazreg, M. Lesieur, C.S.J. Cazin, J. Org. Chem. 80 (2015) 9910-9914.

    10. [10]

      (a) T. Saegusa, Y. Ito, H. Kinoshita, S. Tomita, J. Org. Chem. 36 (1971) 3316-3323;
      (b) F. Sladojevich, A. Trabocchi, A. Guarna, D.J. Dixon, J. Am. Chem. Soc. 133 (2011) 1710-1713.

    11. [11]

      M.S.A. Mehedi, J.J. Tepe, J. Org. Chem. 84(2019) 7219-7226.  doi: 10.1021/acs.joc.9b00883

    12. [12]

      P. Bellotti, J. Brocus, F.E. Orf, et al., J. Org. Chem. 84(2019) 6278-6285.

    13. [13]

      (a) P.D. Morse, D.A. Nicewicz, Chem. Sci. 6 (2015) 270-274;
      (b) W.C. Gao, F. Hu, Y.M. Huo, et al., Org. Lett. 17 (2015) 3914-3917;
      (c) H. Wang, J. Zhang, J. Tan, et al., Org. Lett. 20 (2018) 2505-2508;
      (d) S.S. Chavan, B.D. Rupanawar, R.B. Kamble, A.M. Shelke, G. Suryavanshi, Org. Chem. Front. 5 (2018) 544-548;
      (e) H. Luo, Z. Yang, W. Lin, Y. Zheng, S. Ma, Chem. Sci. 9 (2018) 1964-1969.

    14. [14]

      Y. He, C. Pi, Y. Wu, X. Cui, Chin. Chem. Lett. 31(2020) 396-400.

    15. [15]

      (a) S. Pankajakshan, Y.H. Xu, J.K. Cheng, M.T. Low, T.P. Loh, Angew. Chem. Int. Ed. 51 (2012) 5701-5705;
      (b) Z.Y. Shen, J.K. Cheng, C. Wang, et al., ACS Catal. 9 (2019) 8128-8135;
      (c) P. Shi, S. Li, L.M. Hu, et al., Chem. Commun. 55 (2019) 11115-11118;
      (d) R.H. Liu, Z.Y. Shen, C. Wang, T.P. Loh, X.H. Hu, Org. Lett. 22 (2020) 944-948;
      (e) S. Li, Q.C. Shan, L.M. Hu, X.Q. Ma, X.H. Hu, Chem. Commun. 56 (2020) 7969-7972.

    16. [16]

      (a) B. Maji, S. Lakhdar, H. Mayr, Chem. Eur. J. 18 (2012) 5732-5740;
      (b) L. Yang, Q. Wen, F. Xiao, G.J. Deng, Org. Biomol. Chem. 12 (2014) 9519-9523;
      (c) X.M. Xu, C.H. Lei, S. Tong, J. Zhu, M.X. Wang, Org. Chem. Front. 5 (2018) 3138-3142;
      (d) Y. He, J. Lou, Z. Yu, Y.G. Zhou, Chem. Eur. J. 26 (2020) 4941-4946.

  • 加载中
    1. [1]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    2. [2]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    3. [3]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    4. [4]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    5. [5]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    6. [6]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    7. [7]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    8. [8]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    9. [9]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    10. [10]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    11. [11]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    12. [12]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    13. [13]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    14. [14]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    15. [15]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    16. [16]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    17. [17]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    18. [18]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    19. [19]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    20. [20]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

Metrics
  • PDF Downloads(5)
  • Abstract views(760)
  • HTML views(239)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return