Bifunctional air electrodes for flexible rechargeable Zn-air batteries
-
* Corresponding author.
E-mail address: caiyun@uow.edu.au (C. Wang).
Citation: Xiaoling Lang, Zhibiao Hu, Caiyun Wang. Bifunctional air electrodes for flexible rechargeable Zn-air batteries[J]. Chinese Chemical Letters, ;2021, 32(3): 999-1009. doi: 10.1016/j.cclet.2020.10.005
A. Nathan, A. Ahnood, M.T. Cole, et al., P. IEEE 100(2012) 1486-1517.
doi: 10.1109/JPROC.2012.2190168
K. Takei, W. Honda, S. Harada, et al., Adv. Healthc. Mater. 4(2015) 487-500.
doi: 10.1002/adhm.201400546
L. Li, Y. Bai, L. Li, et al., Adv. Mater. 29(2017) 1702517.
doi: 10.1002/adma.201702517
C. Wang, K. Xia, H. Wang, et al., Adv. Mater. 31(2019) 1801072.
doi: 10.1002/adma.201801072
H.M. Lee, S.Y. Choi, A. Jung, S.H. Ko, Angew. Chem. Int. Ed. 52(2013) 7718-7723.
doi: 10.1002/anie.201301941
D. Wang, Y. Zhang, X. Lu, et al., Chem. Soc. Rev. 47(2018) 4611-4641.
doi: 10.1039/C7CS00192D
H. Kim, J.H. Ahn, Carbon 120(2017) 244-257.
doi: 10.1016/j.carbon.2017.05.041
F. Ning, Y. Shen, C. Bai, et al., Chin. Chem. Lett. 30(2019) 1282-1288.
doi: 10.1016/j.cclet.2019.02.032
L. Liu, Z. Niu, J. Chen, Chin. Chem. Lett. 29(2018) 571-581.
doi: 10.1016/j.cclet.2018.01.013
B. Li, S. Zhang, B. Wang, et al., Energy Environ. Sci. 11(2018) 1723-1729.
doi: 10.1039/C8EE00977E
Y. Jiang, Y.P. Deng, R. Liang, et al., Adv. Energy Mater. 9(2019) 1900911.
doi: 10.1002/aenm.201900911
Y. Zhao, Q. Lai, Y. Wang, et al., ACS Appl. Mater. Inter. 9(2017) 16178-16186.
doi: 10.1021/acsami.7b01712
V. Caramia, B. Bozzini, Mater. Renew. Sustain. Energy 3(2014) 28-40.
doi: 10.1007/s40243-014-0028-3
B. Chen, D.Y.C. Leung, J. Xuan, H. Wang, Appl. Energy 185(2017) 1303-1308.
doi: 10.1016/j.apenergy.2015.10.029
Y. Li, H. Dai, Chem. Soc. Rev. 43(2014) 5257-5275.
doi: 10.1039/C4CS00015C
J.S. Lee, S.T. Kim, R. Cao, et al., Adv. Energy Mater. 1(2011) 34-50.
doi: 10.1002/aenm.201000010
C. Su, H. Cheng, W. Li, et al., Adv. Energy Mater. 7(2017) 1602420.
doi: 10.1002/aenm.201602420
B.Y. Xia, Y. Yan, N. Li, et al., Nat. Energy 1(2016) 1-6.
G. Kannan, P. Sasikumar, K. Devika, Appl. Math. Model. 34(2010) 655-670.
doi: 10.1016/j.apm.2009.06.021
X. Chen, B. Liu, C. Zhong, et al., Adv. Energy Mater. 7(2017) 1700779.
doi: 10.1002/aenm.201700779
J. Park, M. Park, G. Nam, et al., Adv. Mater. 27(2015) 1396-1401.
doi: 10.1002/adma.201404639
S. Patra, R. Choudhary, E. Roy, et al., Nano Energy 30(2016) 118-129.
doi: 10.1016/j.nanoen.2016.10.006
M. Prabu, P. Ramakrishnan, H. Nara, et al., ACS Appl. Mater. Inter. 6(2014) 16545-16555.
doi: 10.1021/am5047476
J. Pan, Y.Y. Xu, H. Yang, et al., Adv. Sci. 5(2018) 1700691.
doi: 10.1002/advs.201700691
J. Fu, Z.P. Cano, M.G. Park, et al., Adv. Mater. 29(2017) 1604685.
doi: 10.1002/adma.201604685
J.E.C. Sabisch, A. Anapolsky, G. Liu, A.M. Minor, Resour. Conserv. Recycl. 129(2018) 129-134.
doi: 10.1016/j.resconrec.2017.10.029
P. Tan, B. Chen, H. Xu, et al., Energy Environ. Sci. 10(2017) 2056-2080.
doi: 10.1039/C7EE01913K
S. Chen, L. Zhao, J. Ma, et al., Nano Energy 60(2019) 536-544.
doi: 10.1016/j.nanoen.2019.03.084
A.M. El-Sawy, I.M. Mosa, D. Su, et al., Adv. Energy Mater. 6(2016) 1501966.
doi: 10.1002/aenm.201501966
H. Ge, G. Li, T. Zheng, et al., Electrochim. Acta 319(2019) 1-9.
doi: 10.1016/j.electacta.2019.06.121
C. Hu, L. Dai, Adv. Mater. 29(2017) 1604942.
doi: 10.1002/adma.201604942
D. Ji, L. Fan, L. Tao, et al., Angew. Chem. Int. Ed. 58(2019) 13840-13844.
doi: 10.1002/anie.201908736
D. Ji, S. Peng, D. Safanama, et al., Chem. Mater. 29(2017) 1665-1675.
doi: 10.1021/acs.chemmater.6b05056
S. Li, X. Yang, S. Yang, et al., J. Mater. Chem. A 8(2020) 5601-5611.
doi: 10.1039/D0TA00888E
C. Du, Y. Gao, J. Wang, W. Chen, J. Mater. Chem. A 8(2020) 9981-9990.
doi: 10.1039/D0TA03457F
Y. Yan, Y. Xu, B. Zhao, et al., J. Mater. Chem. A 8(2020) 5070-5077.
doi: 10.1039/D0TA00554A
K.N. Dinh, Z. Pei, Z. Yuan, et al., J. Mater. Chem. A 8(2020) 7297-7308.
doi: 10.1039/C9TA13651G
J. Spendelow, A. Wieckowski, Phys. Chem. Chem. Phys. 9(2007) 2654-2675.
doi: 10.1039/b703315j
F. Jaouen, E. Proietti, M. Lefèvre, Energy Environ. Sci. 4(2011) 114-130.
doi: 10.1039/C0EE00011F
K. Kinoshita, Electrochemical Oxygen Technology, John Wiley & Sons, California, 1992.
X. Wang, P.J. Sebastian, M.A. Smit, et al., J. Power Sources 124(2003) 278-284.
doi: 10.1016/S0378-7753(03)00737-7
X. Li, F. Dong, N. Xu, et al., ACS Appl. Mater. Interfaces 10(2018) 15591-15601.
doi: 10.1021/acsami.7b18684
J. Fu, R. Liang, G. Liu, et al., Adv. Mater. 31(2019) 1805230.
doi: 10.1002/adma.201805230
H.F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28(2018) 1803329.
doi: 10.1002/adfm.201803329
Y. He, B. Matthews, J. Wang, et al., J. Mater. Chem. A 6(2018) 735-753.
doi: 10.1039/C7TA09301B
Q. Liu, Z. Chang, Z. Li, X. Zhang, Small Methods 2(2018) 1700231.
doi: 10.1002/smtd.201700231
G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, Renew. Sust. Energy Rev. 89(2018) 292-308.
doi: 10.1016/j.rser.2018.03.002
Y. Xu, Y. Zhang, Z. Guo, et al., Angew. Chem. 127(2015) 15610-15614.
doi: 10.1002/ange.201508848
S. Zeng, H. Chen, H. Wang, et al., Small 13(2017) 1700518.
doi: 10.1002/smll.201700518
Q. Liu, Y. Wang, L. Dai, J. Yao, Adv. Mater. 28(2016) 3000-3006.
doi: 10.1002/adma.201506112
A.B.A. Reyimjan, A. Sidik, J. Phys. Chem. B 110(2006) 1787-1793.
doi: 10.1021/jp055150g
X. Cai, L. Lai, J. Lin, Z. Shen, Mater. Horizons 4(2017) 945-976.
doi: 10.1039/C7MH00358G
R. Paul, F. Du, L. Dai, et al., Adv. Mater. 31(2019) 1805598.
doi: 10.1002/adma.201805598
C. Tang, B. Wang, H.F. Wang, Q. Zhang, Adv. Mater. 29(2017) 1703185.
doi: 10.1002/adma.201703185
M. Zhang, L. Dai, Nano Energy 1(2012) 514-517.
doi: 10.1016/j.nanoen.2012.02.008
H. Cheng, M.L. Li, C.Y. Su, et al., Adv. Funct. Mater. 27(2017) 1701833.
doi: 10.1002/adfm.201701833
Y. Cheng, Y. Tian, X. Fan, et al., Electrochim. Acta 143(2014) 291-296.
doi: 10.1016/j.electacta.2014.08.001
X. Zheng, X. Cao, K. Zeng, et al., J. Mater. Chem. A 8(2020) 11202-11209.
doi: 10.1039/D0TA00014K
K. Tang, C. Yuan, Y. Xiong, et al., Appl. Catal. B 260(2020) 118209.
doi: 10.1016/j.apcatb.2019.118209
G.L. Tian, M.Q. Zhao, D. Yu, et al., Small 10(2014) 2251-2259.
doi: 10.1002/smll.201303715
C. Zhu, S. Dong, Nanoscale 5(2013) 1753-1767.
doi: 10.1039/c2nr33839d
J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10(2015) 444-452.
doi: 10.1038/nnano.2015.48
K. Qu, Y. Zheng, S. Dai, S.Z. Qiao, Nano Energy 19(2016) 373-381.
doi: 10.1016/j.nanoen.2015.11.027
C. Hu, L. Dai, Adv. Mater. 31(2019) 1804672.
doi: 10.1002/adma.201804672
Q. Lv, W. Si, J. He, et al., Nat. Commun. 9(2018) 3376.
doi: 10.1038/s41467-018-05878-y
C. Tang, H.F. Wang, X. Chen, et al., Adv. Mater. 28(2016) 6845-6851.
doi: 10.1002/adma.201601406
W. Lei, Y. Deng, G. Li, et al., ACS Catal. 8(2018) 2464-2472.
doi: 10.1021/acscatal.7b02739
X. Liu, L. Dai, Nat. Rev. Mater. 1(2016) 1-12.
F.L. Meng, K.H. Liu, Y. Zhang, et al., Small 14(2018) 1703843.
doi: 10.1002/smll.201703843
J. Zhang, L. Dai, Angew. Chem. Int. Ed. 55(2016) 13296-13300.
doi: 10.1002/anie.201607405
Z. Lu, J. Wang, S. Huang, et al., Nano Energy 42(2017) 334-340.
doi: 10.1016/j.nanoen.2017.11.004
Y. Qian, Z. Hu, X. Ge, et al., Carbon 111(2017) 641-650.
doi: 10.1016/j.carbon.2016.10.046
X. Zheng, X. Cao, J. Wu, et al., Carbon 107(2016) 907-916.
doi: 10.1016/j.carbon.2016.06.102
W. Schofberger, F. Faschinger, S. Chattopadhyay, et al., Angew. Chem. Int. Ed. 55(2016) 2350-2355.
doi: 10.1002/anie.201508404
W. Zhang, W. Lai, R. Cao, Chem. Rev. 117(2017) 3717-3797.
doi: 10.1021/acs.chemrev.6b00299
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 146(2017) 4998.
H.W. Liang, X. Zhuang, S. Bruller, et al., Nat. Commun. 5(2014) 4973.
doi: 10.1038/ncomms5973
H. Zhang, R. Lv, J. Materiomics 4(2018) 95-107.
doi: 10.1016/j.jmat.2018.02.006
T.Y. Ma, J. Ran, S. Dai, et al., Angew. Chem. 54(2015) 4646-4650.
doi: 10.1002/anie.201411125
Y. Zhao, R. Nakamura, K. Kamiya, et al., Nat. Commun. 4(2013) 2390.
doi: 10.1038/ncomms3390
S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Adv. Mater. 26(2014) 2925-2930.
doi: 10.1002/adma.201305608
Z. Zhao, Z. Yuan, Z. Fang, et al., Adv. Sci. 5(2018) 1800760.
doi: 10.1002/advs.201800760
S.S. Shinde, J.Y. Yu, J.W. Song, et al., Nanoscale Horizons 2(2017) 333-341.
doi: 10.1039/C7NH00058H
Y. Qiao, P. Yuan, Y. Hu, et al., Adv. Mater. 30(2018) 1804504.
doi: 10.1002/adma.201804504
P. Du, K. Hu, J. Lyu, et al., Appl. Catal. B 276(2020) 119172.
doi: 10.1016/j.apcatb.2020.119172
W. Zhang, Z. Li, J. Chen, et al., Nanotechnology 31(2020) 185703.
doi: 10.1088/1361-6528/ab6cd9
Y. Ito, T. Ohto, D. Hojo, et al., ACS Catal. 8(2018) 3579-3586.
doi: 10.1021/acscatal.7b04091
F. Meng, H. Zhong, D. Bao, et al., J. Am. Chem. Soc. 138(2016) 10226-10231.
doi: 10.1021/jacs.6b05046
P. Chen, K. Xu, Z. Fang, et al., Angew. Chem. 54(2015) 14710-14714.
doi: 10.1002/anie.201506480
W.J. Jiang, L. Gu, L. Li, et al., J. Am. Chem. Soc. 138(2016) 3570-3578.
doi: 10.1021/jacs.6b00757
A. Kudo, Y. Miseki, Chem. Soc. Rev. 38(2009) 253-278.
doi: 10.1039/B800489G
U.I. Kramm, I. Herrmann-Geppert, J. Behrends, et al., J. Am. Chem. Soc. 138(2016) 635-640.
doi: 10.1021/jacs.5b11015
J.A. Varnell, E.C. Tse, C.E. Schulz, et al., Nat. Commun. 7(2016) 12582.
doi: 10.1038/ncomms12582
Q. Li, W. Chen, H. Xiao, et al., Adv. Mater. 30(2018) e1800588.
doi: 10.1002/adma.201800588
J. Bian, Z. Li, N. Li, C. Sun, Inorg. Chem. 58(2019) 8208-8214.
doi: 10.1021/acs.inorgchem.9b01034
D. Ji, L. Fan, L. Li, et al., Adv. Mater. 31(2019) e1808267.
doi: 10.1002/adma.201808267
H. Zhang, T. Wang, A. Sumboja, et al., Adv. Funct. Mater. 28(2018) 1804846.
doi: 10.1002/adfm.201804846
Y. Li, J. Yin, L. An, et al., Nanoscale 10(2018) 6581-6588.
doi: 10.1039/C8NR01381K
A. Sumboja, J. Chen, Y. Ma, et al., ChemCatChem 11(2019) 1205-1213.
doi: 10.1002/cctc.201802013
Y. Zhu, W. Zhou, Z. Shao, Small 13(2017) 1603793.
doi: 10.1002/smll.201603793
L.Y. Liang Y, H. Wang, Nat. Mater. 10(2011) 780-786.
doi: 10.1038/nmat3087
W.H. Liang Y, J. Zhou, J. Am. Chem. Soc. 134(2012) 3517-3523.
doi: 10.1021/ja210924t
M.G. Park, D.U. Lee, M.H. Seo, Small 12(2016) 2707-2714.
doi: 10.1002/smll.201600051
T. Ling, P. Da, X. Zheng, et al., Sci. Adv. 4(2018) eaau6261.
doi: 10.1126/sciadv.aau6261
T. Huang, K. Jiang, D. Chen, G. Shen, Chin. Chem. Lett. 29(2018) 553-563.
doi: 10.1016/j.cclet.2017.12.007
H.B. Tao, L. Fang, J. Chen, et al., J. Am. Chem. Soc. 138(2016) 9978-9985.
doi: 10.1021/jacs.6b05398
C. Wei, Z. Feng, G.G. Scherer, et al., Adv. Mater. 29(2017) 1606800.
doi: 10.1002/adma.201606800
K. Huang, Y. Sun, Y. Zhang, et al., Adv. Mater. 31(2019) e1801430.
doi: 10.1002/adma.201801430
A. Chinnappan, D. Ji, C. Baskar, et al., J. Alloys Compd. 735(2018) 2311-2317.
doi: 10.1016/j.jallcom.2017.11.390
D. Ji, J. Sun, L. Tian, et al., Adv. Funct. Mater. 30(2020) 1910568.
doi: 10.1002/adfm.201910568
S. Peng, X. Han, L. Li, et al., Adv. Energy Mater. 8(2018) 1800612.
doi: 10.1002/aenm.201800612
T. Zhou, W. Xu, N. Zhang, et al., Adv. Mater. 31(2019) 1807468.
doi: 10.1002/adma.201807468
Z. Jiang, Z.J. Jiang, T. Maiyalagan, A. Manthiram, J. Mater. Chem. A 4(2016) 5877-5889.
doi: 10.1039/C6TA01349J
S. Zeng, X. Tong, S. Zhou, et al., Small 14(2018) 1803409.
doi: 10.1002/smll.201803409
X. Zheng, X. Han, H. Liu, et al., ACS Appl. Mater. Interfaces 10(2018) 13675-13684.
doi: 10.1021/acsami.8b01651
J. Suntivich, H.A. Gasteiger, N. Yabuuchi, et al., Nat. Chem. 3(2011) 546-550.
doi: 10.1038/nchem.1069
N. Xu, H. Zhao, X. Zhou, et al., Int. J. Hydrogen Energy 35(2010) 7295-7301.
doi: 10.1016/j.ijhydene.2010.04.149
J. Fu, D.U. Lee, F.M. Hassan, et al., Adv. Mater. 27(2015) 5617-5622.
doi: 10.1002/adma.201502853
T.V. Tam, S.G. Kang, M.H. Kim, et al., Adv. Energy Mater. (2019) 1900945.
doi: 10.1002/aenm.201900945
J. Zhang, M. Zhang, Y. Zeng, et al., Small 15(2019) e1900307.
doi: 10.1002/smll.201900307
J.I. Jung, M. Risch, S. Park, et al., Energy Environ. Sci. 9(2016) 176.
doi: 10.1039/C5EE03124A
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2024.100191
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Chuyuan Lin , Hui Lin , Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407