Citation: Yaohang Cheng, Yuhang He, Jie Zheng, Hui Yang, Jun Liu, Guanghui An, Guangming Li. Ruthenium(Ⅱ)-catalyzed para-selective C—H difluoroalkylation of aromatic aldehydes and ketones using transient directing groups[J]. Chinese Chemical Letters, ;2021, 32(4): 1437-1441. doi: 10.1016/j.cclet.2020.09.044 shu

Ruthenium(Ⅱ)-catalyzed para-selective C—H difluoroalkylation of aromatic aldehydes and ketones using transient directing groups

    * Corresponding authors at: Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
    E-mail addresses: chemagh@163.com (Guanghui An), gmli@hlju.edu.cn (Guangming Li).
    1 These three authors contributed equally to this work.
  • Received Date: 31 July 2020
    Revised Date: 9 September 2020
    Accepted Date: 24 September 2020
    Available Online: 25 September 2020

Figures(7)

  • A Ru(Ⅱ)-catalyzed para-difluoroalkylation of aromatic aldehydes and ketones with a transient directing group has been developed. It utilizes less expensive ruthenium catalysts and allows facile access to challenging difluoroalkylated aldehydes. The mechanism studies suggest that the distinct coordination mode of ruthenium complex with imine moieties is responsible for para-selectivity.
  • 加载中
    1. [1]

      (a) G.M. Blackburn, D.A. England, F. Kolkmann, J. Chem. Soc. Chem. Commun. (1981) 930-932;
      (b) M.O. Anderson, J. Zhang, Y. Liu, et al., J. Med. Chem. 55 (2012) 5942-5950;
      (c) J.O. Link, J.G. Taylor, L. Xu, et al., J. Med. Chem. 57 (2014) 2033-2046;
      (d) N.A. Meanwell, J. Med. Chem. 54 (2011) 2529-2591;
      (e) S. Purser, P.R. Moore, S. Swallow, et al., Chem. Soc. Rev. 37 (2008) 320-330.

    2. [2]

      (a) M.C. Belhomme, T. Poisson, X. Pannecoucke, J. Org. Chem. 79 (2014) 7205-7211;
      (b) M.C. Belhomme, A. Bayle, T. Poisson, et al., Eur. J. Org. Chem. 2015 (2015) 1719-1726;
      (c) C. Chen, R. Zeng, J. Zhang, et al., Eur. J. Org. Chem. 2017 (2017) 6947-6950;
      (d) H. Chen, P. Li, M. Wang, et al., Org. Lett. 18 (2016) 4794-4797;
      (e) S. Han, A. Liang, X. Ren, et al., Tetrahedron Lett. 58 (2017) 4859-4863;
      (f) J. Jung, E. Kim, Y. You, et al., Adv. Synth. Catal. 356 (2014) 2741-2748;
      (g) M.L. Ke, Q.L. Song, Chem. Commun. 53 (2017) 2222-2225;
      (h) J.A. Leitch, C.J. Heron, J. McKnight, et al., Chem. Commun. 53 (2017) 13039-13042;
      (i) J.A. Leitch, C.L. McMullin, M.F. Mahon, et al., ACS Catal. 7 (2017) 2616-2623;
      (j) S. Murakami, H. Ishii, T. Tajima, Tetrahedron 62 (2006) 3761-3769;
      (k) Y. Ohtsuka, T. Yamakawa, Tetrahedron 67 (2011) 2323-2331;
      (l) Y.M. Su, Y. Hou, F. Yin, et al., Org. Lett. 16 (2014) 2958-2961;
      (m) L. Wang, X.J. Wei, W.L. Jia, Org. Lett. 16 (2014) 5842-5845;
      (n) L. Wang, X.J. Wei, W.L. Lei, et al., Chem. Commun. 50 (2014) 15916-15919;
      (o) Z. Feng, Q.Q. Min, Y.L. Xiao, et al., Angew. Chem. Int. Ed. 53 (2014) 1669-1673;
      (p) Z. Feng, Y.L. Xiao, X. Zhang, Acc. Chem. Res. 51 (2018) 2264-2278;
      (q) Y.L. Xiao, W.H. Guo, G.Z. He, et al., Angew. Chem. Int. Ed. 53 (2014) 9909-9913.

    3. [3]

      (a) L.C. Yu, J.W. Gu, S. Zhang, et al., J. Org. Chem. 82 (2017) 3943-3949;
      (b) P.B. Arockiam, L. Guillemard, J. Wencel-Delord, Adv. Synth. Catal. 359 (2017) 2571-2579.

    4. [4]

      (a) Z. Ruan, S.K. Zhang, C. Zhu, et al., Angew. Chem. Int. Ed. 56 (2017) 2045-2049;
      (b) Z.Y. Li, L. Li, Q.L. Li, et al., Chem. Eur. J. 23 (2017) 3285-3290;
      (c) H. Zhao, G. Ma, X. Xie, et al., Chem. Commun. 55 (2019) 3927-3930;
      (d) P. Gandeepan, J. Koeller, K. Korvorapun, et al., Angew. Chem. Int. Ed. 58 (2019) 9820-9825.

    5. [5]

      F. Fumagalli, S. Warratz, S.K. Zhang, et al., Chem. Eur. J. 24(2018) 3984-3988.  doi: 10.1002/chem.201800530

    6. [6]

      (a) X.G. Wang, Y. Li, L.L. Zhang, et al., Chem. Commun. 54 (2018) 9541-9544;
      (b) C. Yuan, L. Zhu, C. Chen, et al., Nat. Commun. 9 (2018) 1189.

    7. [7]

      C. Yuan, L. Zhu, R. Zeng, et al., Angew. Chem. Int. Ed. 57(2018) 1277-1281.  doi: 10.1002/anie.201711221

    8. [8]

      G. Tu, C. Yuan, Y. Li, et al., Angew. Chem. Int. Ed. 57(2018) 15597-15601.  doi: 10.1002/anie.201809788

    9. [9]

      (a) J. Zhou, F. Wang, Z. Lin, et al., Org. Lett. 22 (2020) 68-72;
      (b) W. Tang, F. Tang, J. Xu, et al., Chem. Commun. 56 (2020) 1497-1500.

    10. [10]

      Y.J. Mao, B.X. Wang, Q.Z. Wu, et al., Chem. Commun. 55(2019) 2019-2022.  doi: 10.1039/C8CC09129C

    11. [11]

      (a) X.F. Huang, Q.L. Wu, J.S. He, et al., Org. Biomol. Chem. 13 (2015) 4466-4472;
      (b) Z. Jiao, L.H. Lim, H. Hirao, et al., Angew. Chem. Int. Ed. 57 (2018) 6294-6298;
      (c) W. Li, D. Yuan, G. Wang, et al., J. Am. Chem. Soc. 141 (2019) 3187-3197;
      (d) K.D. Mane, A. Mukherjee, K. Vanka, et al., J. Org. Chem. 84 (2019) 2039-2047.

    12. [12]

      (a) P.W. Tan, N.A.B. Juwaini, J. Seayad, J. Org, Lett. 15 (2013) 5166-5169;
      (b) F.L. Zhang, K. Hong, T.J. Li, et al., Science 351 (2016) 252-256;
      (c) X.Y. Chen, S. Ozturk, E.J. Sorensen, Org. Lett. 19 (2017) 1140-1143;
      (d) X.Y. Chen, S. Ozturk, E.J. Sorensen, Org. Lett. 19 (2017) 6280-6283;
      (e) X.Y. Chen, E.J. Sorensen, J. Am. Chem. Soc. 140 (2018) 2789-2792;
      (f) X.Y. Chen, E.J. Sorensen, Chem. Sci. 9 (2018) 8951-8956;
      (g) A.E. Hande, V.B. Ramesh, K.R. Prabhu, Chem. Commun. 54 (2018) 12113-12116;
      (h) F. Li, Y. Zhou, H. Yang, et al., Org. Lett. 20 (2018) 146-149;
      (i) F. Li, Y. Zhou, H. Yang, et al., Org. Lett. 21 (2019) 3692-3695;
      (j) X. Liu, Z. Wang, Q. Chen, et al., Appl. Organomet. Chem. 32 (2018) e4039;
      (k) X.H. Liu, H. Park, J.H. Hu, et al., J. Am. Chem. Soc. 139 (2017) 888-896;
      (l) F. Ma, M. Lei, L. Hu, Org. Lett. 18 (2016) 2708-2711;
      (m) D. Mu, X. Wang, G. Chen, et al., J. Org. Chem. 82 (2017) 4497-4503;
      (n) D.Y. Wang, S.H. Guo, G.F. Pan, et al., Org. Lett. 20 (2018) 1794-1797;
      (o) X. Wang, S. Song, N. Jiao, Chin. J. Chem. 36 (2018) 213-216;
      (p) Y. Cheng, J. Zheng, C. Tian, et al., Asian J. Org. Chem. 8 (2019) 526-531.

    13. [13]

      Y.L. Xiao, B. Zhang, Z. Feng, et al., Org. Lett. 16(2014) 4822-4825.  doi: 10.1021/ol502121m

    14. [14]

      Q. Wang, Y.T. He, J.H. Zhao, et al., Org. Lett. 18(2016) 2664-2667.  doi: 10.1021/acs.orglett.6b01038

    15. [15]

      Q. Yu, L. Hu, Y. Wang, et al., Angew. Chem. Int. Ed. 54(2015) 15284-15288.  doi: 10.1002/anie.201507100

    16. [16]

      I.S. Kondratov, M.Y. Bugera, N.A. Tolmachova, et al., J. Org. Chem. 80(2015) 12258-12264.  doi: 10.1021/acs.joc.5b02171

    17. [17]

      Z. Jiao, L.H. Lim, H. Hirao, et al., Angew. Chem. Int. Ed. 57(2018) 6294-6298.

  • 加载中
    1. [1]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    2. [2]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    3. [3]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    4. [4]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    5. [5]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    6. [6]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    7. [7]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    8. [8]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    9. [9]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    10. [10]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    11. [11]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    12. [12]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    13. [13]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    14. [14]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    15. [15]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    16. [16]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    17. [17]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    20. [20]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

Metrics
  • PDF Downloads(13)
  • Abstract views(606)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return