Citation: Jin-Yang Chen, Chun-Tao Zhong, Qing-Wen Gui, Yuan-Ming Zhou, Yang-Yang Fang, Kai-Jian Liu, Ying-Wu Lin, Zhong Cao, Wei-Min He. Practical and sustainable approach for clean preparation of 5-organylselanyl uracils[J]. Chinese Chemical Letters, ;2021, 32(1): 475-479. doi: 10.1016/j.cclet.2020.09.034 shu

Practical and sustainable approach for clean preparation of 5-organylselanyl uracils

    * Corresponding author.
    E-mail address: weiminhe2016@yeah.net (W.-M. He).
  • Received Date: 5 August 2020
    Revised Date: 3 September 2020
    Accepted Date: 21 September 2020
    Available Online: 23 September 2020

Figures(11)

  • An eco-friendly, sustainable and practical method for the efficient preparation of 5-organylselanyl uracils through the electrochemical selenylation of uracils and diorganyl diselenides at room temperature under oxidant- and external electrolyte-free conditions was developed.
  • 加载中
    1. [1]

      (a) Y. Kim, C.J. Li, Green Synth. Catal. 1 (2020) 1-11;
      (b) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 30 (2019) 2132-2138;
      (c) K.J. Liu, T.Y. Zeng, J.L. Zeng, et al., Chin. Chem. Lett. 30 (2019) 2304-2308;
      (d) J. Shi, W. Wei, Chin. J. Org. Chem. 40 (2020) 2170-2172;
      (e) L.Y. Xie, Y.S. Liu, H.R. Ding, et al., Chin. J. Catal. 41 (2020) 1168-1173;
      (f) J.Y. Liao, Q.Y. Wu, X. Lu, et al., Green Chem. 21 (2019) 6567-6573.

    2. [2]

      (a) A. Pałasz, D. Ciez, Eur. J. Med. Chem. 97 (2015) 582-611;
      (b) D.P. Angelika, D. Joanna, P. Marlena, et al., Anticancer Agents Med. Chem. 20 (2020) 359-368.

    3. [3]

      (a) B. Banerjee, M. Koketsu, Coord. Chem. Rev. 339 (2017) 104-127;
      (b) Q.B. Zhang, Y.L. Ban, P.F. Yuan, et al., Green Chem. 19 (2017) 5559-5563;
      (c) T. Guo, X.N. Wei, Y. Liu, P.K. Zhang, Y.H. Zhao, Org. Chem. Front. 6 (2019) 1414-1422;
      (d) P. Ni, J. Tan, W. Zhao, et al., Org. Lett. 21 (2019) 3518-3522;
      (e) T. Guo, X.N. Wei, M. Zhang, et al., Chem. Commun. 56 (2020) 5751-5754;
      (f) X. Xu, D. Chen, Z. Wang, Chin. J. Org. Chem. 39 (2020) 3338-3352;
      (g) J. Zhang, H. Wang, Y. Chen, et al., Chin. Chem. Lett. 31 (2020) 1576-1579;
      (h) P. Ni, J. Tan, W. Zhao, H. Huang, G.J. Deng, Adv. Synth. Catal. 361 (2019) 5351-5356.

    4. [4]

      (a) M. Sosnowska, S. Makurat, M. Zdrowowicz, J. Rak, J. Phys. Chem. B 121 (2017) 6139-6147;
      (b) D. Bartolini, L. Sancineto, A. Fabro de Bem, et al., Selenocompounds in cancer therapy: an overview, in: K.D. Tew, F. Galli (Eds.), Advances in Cancer Research, Vol. 136, Academic Press, 2017, pp. 259-302;
      (c) S. Makurat, M. Zdrowowicz, L. Chomicz-Mańka, et al., RSC Adv. 8 (2018) 21378-21388.

    5. [5]

      (a) K. Anzai, J. Heterocycl. Chem. 16 (1979) 567-569;
      (b) A. Jana, A.K. Panday, R. Mishra, T. Parvin, L.H. Choudhury, ChemistrySelect 2 (2017) 9420-9424;
      (c) D.H. Lee, Y.H. Kim, Synlett 1995 (1995) 349-350;
      (d) X.D. Li, Y.T. Gao, Y.J. Sun, et al., Org. Lett. 21 (2019) 6643-6647.

    6. [6]

      (a) K. Sun, X. Wang, F. Fu, et al., Green Chem. 19 (2017) 1490-1493;
      (b) W. Wei, H. Cui, H. Yue, D. Yang, Green Chem. 20 (2018) 3197-3202;
      (c) K. Sun, Z. Shi, Z. Liu, et al., Org. Lett. 20 (2018) 6687-6690;
      (d) D. Yang, G. Li, C. Xing, et al., Org. Chem. Front. 5 (2018) 2974-2979;
      (e) J. Hua, Z. Fang, J. Xu, et al., Green Chem. 21 (2019) 4706-4711;
      (f) K. Sun, S. Wang, R. Feng, et al., Org. Lett. 21 (2019) 2052-2055;
      (g) X.L. Ma, Q. Wang, X.Y. Feng, et al., Green Chem. 21 (2019) 3547-3551;
      (h) B. Huang, Y. Li, C. Yang, W. Xia, Green Chem. 22 (2020) 2804-2809;
      (i) J. Hua, Z. Fang, M. Bian, et al., ChemSusChem 13 (2020) 2053-2059.

    7. [7]

      (a) J. Wen, L. Zhang, X. Yang, et al., Green Chem. 21 (2019) 3597-3601;
      (b) S. Zhang, L. Li, J. Zhang, et al., Chem. Sci. 10 (2019) 3181-3185;
      (c) H. Wang, J. Shi, J. Tan, et al., Org. Lett. 21 (2019) 9430-9433;
      (d) X. Kong, Y. Liu, L. Lin, Q. Chen, B. Xu, Green Chem. 21 (2019) 3796-3801;
      (e) J. Zhou, X.Z. Tao, J.J. Dai, et al., Chem. Commun. 55 (2019) 9208-9211;
      (f) C. Wan, R.J. Song, J.H. Li, Org. Lett. 21 (2019) 2800-2803;
      (g) G.Y. Dou, Y.Y. Jiang, K. Xu, C.C. Zeng, Org. Chem. Front. 6 (2019) 2392-2397;
      (h) Y.Z. Yang, R.J. Song, J.H. Li, Org. Lett. 21 (2019) 3228-3231;
      (i) Z. Zhang, J. Yan, D. Ma, J. Sun, Chin. Chem. Lett. 30 (2019) 1509-1511;
      (j) H. Ding, K. Xu, C.C. Zeng, J. Catal. 381 (2020) 38-43;
      (k) J.Y. Chen, H.Y. Wu, Q.W. Gui, et al., Org. Lett. 22 (2020) 2206-2209;
      (l) X. Meng, Y. Zhang, J. Luo, et al., Org. Lett. 22 (2020) 1169-1174;
      (m) M.X. He, Z.Y. Mo, Z.Q. Wang, et al., Org. Lett. 22 (2020) 724-728;
      (n) L.B. Zhang, R.S. Geng, Z.C. Wang, et al., Green Chem. 22 (2020) 16-21;
      (o) T.S. Zhang, W.J. Hao, R. Wang, et al., Green Chem. 22 (2020) 4259-4269;
      (p) J. Zhong, Y. Yu, D. Zhang, K. Ye, Chin. Chem. Lett. (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.08.011.

    8. [8]

      (a) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (b) L.Y. Xie, T.G. Fang, J.X. Tan, et al., Green Chem. 21 (2019) 3858-3863;
      (c) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. 30 (2019) 2259-2262;
      (d) W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1895-1898;
      (e) K.J. Liu, J.H. Deng, T.Y. Zeng, et al., Chin. Chem. Lett. 31 (2020) 1868-1872;
      (f) L.Y. Xie, Y.S. Bai, X.Q. Xu, et al., Green Chem. 22 (2020) 1720-1725;
      (g) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. China Chem. 62 (2019) 460-464.

    9. [9]

      K. Van Aken, L. Strekowski, L. Patiny, Beilstein J. Org. Chem. 2 (2006) 3-9.

  • 加载中
    1. [1]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    2. [2]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    3. [3]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    4. [4]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    5. [5]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    6. [6]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193

    13. [13]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    14. [14]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    15. [15]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    16. [16]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    17. [17]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    18. [18]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    19. [19]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    20. [20]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

Metrics
  • PDF Downloads(9)
  • Abstract views(1070)
  • HTML views(245)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return