Citation: Yongqi Yu, Zhen Xia, Qianlong Wu, Da Liu, Lin Yu, Yuanjiu Xiao, Ze Tan, Wei Deng, Gangguo Zhu. Direct synthesis of benzoxazinones via Cp*Co(Ⅲ)-catalyzed C–H activation and annulation of sulfoxonium ylides with dioxazolones[J]. Chinese Chemical Letters, ;2021, 32(3): 1263-1266. doi: 10.1016/j.cclet.2020.09.020 shu

Direct synthesis of benzoxazinones via Cp*Co(Ⅲ)-catalyzed C–H activation and annulation of sulfoxonium ylides with dioxazolones

    * Corresponding authors.
    E-mail addresses: ztanze@gmail.com (Z. Tan), weideng@hnu.edu.cn (W. Deng).
  • Received Date: 19 July 2020
    Revised Date: 14 September 2020
    Accepted Date: 15 September 2020
    Available Online: 16 September 2020

Figures(6)

  • A highly novel and direct synthesis of benzoxazinones was developed via Cp*Co(Ⅲ)-catalyzed C–H activation and [3+3] annulation between sulfoxonium ylides and dioxazolones. The reaction is conducted under base-free conditions and tolerates various functional groups. Starting from diverse readily available sulfoxonium ylides and dioxazolones, a variety of benzoxazinones could be synthesized in one step in 32%-75% yields.
  • 加载中
    1. [1]

      A. Krantz, R.W. Spencer, T.F. Tam, et al., J. Med. Chem. 33(1990) 464-479.  doi: 10.1021/jm00164a002

    2. [2]

      Y. Uejima, M. Kokubo, J. Oshida, et al., J. Pharmacol. Exp. Ther. 265(1993) 516-523.

    3. [3]

      Y. Yamada, T. Kato, H. Ogino, et al., Horm. Metab. Res. 40(2008) 539-543.  doi: 10.1055/s-2008-1076699

    4. [4]

      L. Wang, Y.B. Xie, N.Y. Huang, et al., ACS Catal. 6(2016) 4010-4016.  doi: 10.1021/acscatal.6b00165

    5. [5]

      K.C. Prousis, A. Tzani, N. Avlonitis, J. Heterocycl. Chem. 50(2013) 1313-1321.  doi: 10.1002/jhet.1869

    6. [6]

      G.M. Coppola, J. Heterocycl. Chem. 37(2000) 1369-1388.  doi: 10.1002/jhet.5570370601

    7. [7]

      E. Manivannan, S.C. Chaturvedi, Bioorg. Med. Chem. 19(2011) 4520-4528.  doi: 10.1016/j.bmc.2011.06.019

    8. [8]

      X.F. Wu, H. Neumann, M. Beller, Chem. Eur. J. 18(2012) 12599-12602.  doi: 10.1002/chem.201202142

    9. [9]

      X.L. Lian, H. Lei, Z.H. Guan, et al., Chem. Commun. 49(2013) 8196-8198.  doi: 10.1039/c3cc44215b

    10. [10]

      (a) R.K. Chinnagolla, S. Pimparkar, M. Jeganmohan, Chem. Commun. 49 (2013) 3703-3705;
      (b) J. Peng, M. Chen, Q. Zhu, et al., Org. Chem. Front. 1 (2014) 777-781;
      (c) Z. Chen, B. Wang, Y. Zhang, et al., Org. Chem. Front. 2 (2015) 1107-1295;
      (d) W.H. Rao, B.F. Shi, Org. Chem. Front. 3 (2016) 1028-1047;
      (e) T. Liu, W. Zhou, J. Wu, Org. Lett. 19 (2017) 6638-6641;
      (f) P. Gandeepan, T. Müller, L. Ackermann, et al., Chem. Rev. 119 (2019) 2192-2452;
      (g) Q. Zhang, B.F. Shi, Chin. J. Chem. 37 (2019) 647-656;
      (h) Y. Feng, Z. Zhang, X. Cui, et al., Chin. Chem. Lett. 31(2020) 58-60.

    11. [11]

      (a) C.E. Houlden, G.C. Lloyd-Jones, K.I. Booker-Milburn, et al., Angew. Chem. Int. Ed. 48 (2009) 1830-1833;
      (b) R. Giri, J.K. Lam, J.Q. Yu, J. Am. Chem. Soc. 132 (2010) 686-693;
      (c) S. Kim, P. Chakrasali, I.S. Kim, et al., J. Org. Chem. 82 (2017) 7555-7563;
      (d) H. Deng, H. Li, L. Wang, et al., Chem. Commun. 53 (2017) 10322-10325;
      (e) C.F. Liu, M. Liu, L. Dong, et al., Org. Chem. Front. 5 (2018) 2115-2119;
      (f) I. Tanimoto, K. Kawai, S. Matsunaga, et al., Heterocycles 99 (2019) 118-125;
      (g) J. Li, S. Zhang, H. Zou, et al., Chem. Commun. 55 (2019) 11203-11206.

    12. [12]

      (a) P.G. Chirila, C.J. Whiteoak, Dalton Trans. 46 (2017) 9721-9739;
      (b) J. Ghorai, P. Anbarasan, Asian J. Org. Chem. 8 (2019) 430-455.

    13. [13]

      R. Kuppusamy, R. Santhoshkumar, C.H. Cheng, et al., ACS Catal. 8(2018) 1880-1883.  doi: 10.1021/acscatal.7b04087

    14. [14]

      B. Sun, M. Kanai, S. Matsunaga, et al., Angew. Chem. Int. Ed. 54(2015) 12968-12972.  doi: 10.1002/anie.201507744

    15. [15]

      S. Fukagawa, Y. Kato, S. Matsunaga, et al., Angew. Chem. Int. Ed. 58(2019) 1153-1157.  doi: 10.1002/anie.201812215

    16. [16]

      P. Patel, S. Chang, ACS Catal. 5(2015) 853-858.  doi: 10.1021/cs501860b

    17. [17]

      S. Nakanowatari, R. Mei, L. Ackermann, et al., ACS Catal. 7(2017) 2511-2515.  doi: 10.1021/acscatal.7b00207

    18. [18]

      (a) L. Kong, X. Yang, X. Li, et al., Org. Chem. Front. 3 (2016) 813-816;
      (b) X. Zhou, Y. Luo, X. Li, et al., ACS Catal. 7 (2017) 7296-7304;
      (c) X. Zhou, Y. Pan, X. Li, Angew. Chem. Int. Ed. 56 (2017) 8163-8167.

    19. [19]

      J.H. Kim, S. Greßies, F. Glorius, Angew. Chem. Int. Ed. 55(2016) 5577-5581.  doi: 10.1002/anie.201601003

    20. [20]

      (a) Z.Z. Zhang, B. Liu, B.F. Shi, et al., Org. Lett. 18 (2016) 1776-1779;
      (b) S.Y. Yan, P.X. Ling, B.F. Shi, et al., Adv. Synth. Catal. 359 (2017) 2912-2917;
      (c) D.Y. Huang, Q.J. Yao, B.F. Shi, et al., Org. Lett. 21 (2019) 951-954;
      (d) Y.H. Liu, P.X. Li, B.F. Shi, et al., Org. Lett. 21 (2019) 1895-1899.

    21. [21]

      (a) J.R. Hummel, J.A. Ellman, J. Am. Chem. Soc. 137 (2015) 490-498;
      (b) G. Sivakumar, A. Vijeta, M. Jeganmohan, Chem. Eur. J. 22 (2016) 5899-5903;
      (c) X.G. Liu, H. Gao, H. Wang, et al., ACS Catal. 7 (2017) 5078-5086;
      (d) P.W. Tan, A.M. Mak, D.J. Dixon, et al., Angew. Chem. Int. Ed. 56 (2017) 16550-16554;
      (e) X. Hu, X. Chen, W. Zeng, et al., ACS Catal. 8 (2018) 1308-1312;
      (f) J.A. Boerth, S. Maity, J.A. Ellman, et al., Nat. Catal. 1 (2018) 673-679;
      (g) S. Ji, K. Yan, B. Wang, et al., Org. Lett. 20 (2018) 5981-5984;
      (h) Q. Li, Y. Wang, B. Wang, et al., Org. Lett. 20 (2018) 7884-7887;
      (i) Y. Huang, C. Pi, X. Cui, et al., Chin. Chem. Lett. 31 (2020) 3237-3240.

    22. [22]

      (a) L. Hu, X. Chen, Z. Tan, et al., Org. Chem. Front. 5 (2018) 216-221;
      (b) L. Yu, X. Chen, Z. Tan, et al., Adv. Synth. Catal. 360 (2018) 1346-1351;
      (c) L. Yu, X. Chen, Z. Tan, et al., Org. Lett. 20 (2018) 3206-3210;
      (d) Y. Yu, Q. Wu, Z. Tan, et al., J. Org, Chem. 84 (2019) 7449-7458;
      (e) L. Yu, C. Yang, Z. Tan, et al., Org. Lett. 21 (2019) 5634-5638;
      (f) Y. Yu, Q. Wu, Z. Tan, et al., Org. Chem. Front. 6 (2019) 3868-3873.

    23. [23]

      (a) Y. Xu, X. Yang, X. Li, et al., Org. Lett. 19 (2017) 4307-4310;
      (b) M. Barday, C. Janot, C. Aissa, et al., Angew. Chem. Int. Ed. 56 (2017) 13117-13121;
      (c) J.D. Neuhaus, R. Oost, N. Maulide, et al., Top. Curr. Chem. 376 (2018) 15;
      (d) J. Vaitla, A. Bayer, Synthesis 51 (2019) 612-628;
      (e) X. Wu, S. Sun, J. Cheng, et al., Synlett 30 (2019) 21-29;
      (f) X. Chen, M. Wang, X. Fan, et al., Org. Lett. 21 (2019) 2541-2545;
      (g) V. Hanchate, A. Kumar, K.R. Prabhu, et al., Org. Lett. 21 (2019) 8424-8428.

    24. [24]

      Q. Jia, L. Kong, X. Li, Org. Chem. Front. 6(2019) 741-745.  doi: 10.1039/C8QO01270A

    25. [25]

      G. Fenton, C.G. Newton, B.M. Wyman, et al., J. Med. Chem. 32(1989) 265-272.  doi: 10.1021/jm00121a047

    26. [26]

      (a) F. Wang, H. Wang, X. Li, et al., Org. Lett. 18 (2016) 1306-1309;
      (b) P. Shi, L. Wang, J. Zhu, et al., Org. Lett. 19 (2017) 2418-2421;
      (c) S.S. Bera, M.R. Sk, M.S. Maji, Chem. Eur. J. 25 (2019) 1806-1811;
      (d) M.D. Zhou, Z. Peng, L. Li, et al., Adv. Synth. Catal. 361 (2019) 5191-5197.

  • 加载中
    1. [1]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    2. [2]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    3. [3]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    4. [4]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    5. [5]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    6. [6]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    7. [7]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    8. [8]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    9. [9]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    12. [12]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    15. [15]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    16. [16]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    17. [17]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    18. [18]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    19. [19]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    20. [20]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

Metrics
  • PDF Downloads(8)
  • Abstract views(932)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return