Citation: Xin Deng, Rongrong Qian, Hongwei Zhou, Lei Yu. Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy[J]. Chinese Chemical Letters, ;2021, 32(3): 1029-1032. doi: 10.1016/j.cclet.2020.09.012 shu

Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy

    * Corresponding authors.
    E-mail addresses: zhouhw@zju.edu.cn (H. Zhou), yulei@yzu.edu.cn (L. Yu).
  • Received Date: 29 July 2020
    Revised Date: 28 August 2020
    Accepted Date: 8 September 2020
    Available Online: 28 September 2020

Figures(1)

  • Irradiated by visible light, the recyclable (PhTe)2-catalyzed oxidative deoximation reaction could occur under mild conditions. In comparison with the thermo reaction, the method employed reduced catalyst loading (1 mol% vs. 2.5 mol%), but afforded elevated product yields with expanded substrate scope. This work demonstrated that for the organotellurium-catalyzed reactions, visible light might be an even more precise driving energy than heating because it could break the Te-Te bond accurately to generate the active free radical catalytic intermediates without damaging the fragile substituents (e.g., heterocycles) of substrates. The use of O2 instead of explosive H2O2 as oxidant affords safer reaction conditions from the large-scale application viewpoint.
  • 加载中
    1. [1]

      (a) Q. Guo, Z. Ma, C. Zhou, et al., Chem. Rev. 119 (2019) 11020-11041;
      (b) C. Xu, P.R. Anusuyadevi, C. Aymonier, et al., Chem. Soc. Rev. 48 (2019) 3868-3902;
      (c) C. Dong, J. Ji, Z. Yang, et al., Chin. Chem. Lett. 30 (2019) 853-862;
      (d) M. Liu, Y. Li, L. Yu, et al., Sci. China Chem. 61 (2018) 294-299;
      (e) L.Y. Xie, Y.L. Chen, L. Qin, et al., Org. Chem. Front. 6 (2019) 3950-3955;
      (f) L.Y. Xie, Y.S. Liu, H.R. Ding, et al., Chin. J. Catal. 41 (2020) 1168-1173;
      (g) H. Li, H. Cao, T. Chen, et al., Mol. Catal. 483 (2020) 110715.

    2. [2]

      (a) H. Jiang, X. An, K. Tong, et al., Angew. Chem. Int. Ed. 54 (2015) 4055-4059;
      (b) Y. Wu, M. Yan, Z. Gao, et al., Chin. Chem. Lett. 30 (2019) 1383-1386;
      (c) B. Zhao, Z. Li, Y. Wu, et al., Angew. Chem. Int. Ed. 58 (2019) 9448-9452;
      (d) H. Zhang, Q. Xu, L. Yu, et al., Eur. J. Org. Chem. (2020) 1472-1477;
      (e) X. Meng, P. Zong, L. Wang, et al., Catal. Commun. 134 (2020) 105860;
      (f) W. Ou, R. Zou, M. Han, et al., Chin. Chem. Lett. 31 (2020) 1899-1902.

    3. [3]

      (a) J. Pan, X. Shao, X. Xu, et al., J. Phys. Chem. C 124 (2020) 6580-6587;
      (b) J. Zelenka, E. Svobodová, J. Tarábek, et al., Org. Lett. 21 (2019) 114-119;
      (c) Y. Ge, P. Diao, C. Xu, et al., Chin. Chem. Lett. 29 (2018) 903-906.

    4. [4]

      (a) L.Y. Xie, Y.S. Bai, X.Q. Xu, et al., Green Chem. 22 (2020) 1720-1725;
      (b) X. Huang, H. Chen, Z. Huang, et al., J. Org. Chem. 84 (2019) 15283-15293.

    5. [5]

      (a) Y. Zheng, A. Wu, Y. Ke, et al., Chin. Chem. Lett. 30 (2019) 937-941;
      (b) G. Zhang, X. Wen, Y. Wang, et al., Prog. Chem. 24 (2012) 361-369.

    6. [6]

      E.J. Corey, P.B. Hopkins, S. Kim, et al., J. Am. Chem. Soc. 101 (1979) 7131-7134.  doi: 10.1021/ja00517a088

    7. [7]

      (a) C. Isart, D. Bastida, J. Burés, et al., Angew. Chem. Int. Ed. 50 (2011) 3275-3279;
      (b) A. Grirrane, A. Corma, H. Garcia, J. Catal. 268 (2009) 350-355;
      (c) R. Reitsema, J. Org. Chem. 23 (1958) 2038-2039;
      (d) E.E. Royals, S.E. Horne Jr., J. Am. Chem. Soc. 73 (1951) 5856-5857.

    8. [8]

      N.C. Ganguly, S. Nayek, S.K. Barik, Synth. Commun. 39 (2009) 4053-4061.  doi: 10.1080/00397910902883678

    9. [9]

      (a) P.K. Pradhan, S. Dey, P. Jaisankar, et al., Synth. Commun. 35 (2005) 913-922;
      (b) A. Ghorbani-Choghamarani, J. Zeinivand, Chin. Chem. Lett. 21 (2010) 1083-1086.

    10. [10]

      G. Zhang, X. Wen, Y. Wang, et al., J. Org. Chem. 76 (2011) 4665-4668.  doi: 10.1021/jo102571e

    11. [11]

      A. García-Ortiz, A. Grirrane, E. Reguera, et al., J. Catal. 311 (2014) 386-392.  doi: 10.1016/j.jcat.2013.12.011

    12. [12]

      (a) Z. Shu, Y. Ye, Y. Deng, et al., Angew. Chem. Int. Ed. 52 (2013) 10573-10576;
      (b) Y. Liu, N. Yang, C. Chu, et al., Chin. J. Chem. 33 (2015) 1011-1014.

    13. [13]

      J. González-Sabín, N. Ríos-Lombardía, I. García, et al., Green Chem. 18 (2016) 989-994.  doi: 10.1039/C5GC02220G

    14. [14]

      (a) Q. Tong, Y. Liu, X. Gao, et al., Adv. Synth. Catal. 361 (2019) 3137-3145;
      (b) S. Borah, B. Bhattacharyya, J. Deka, et al., Dalton Trans. 46 (2017) 8664-8672;
      (c) S. Abedi, B. Karimi, F. Kazemi, et al., Org. Biomol. Chem. 11 (2013) 416-419;
      (d) A. Shaabani, Z. Hezarkhani, E. Badali, RSC Adv. 5 (2015) 61759-61767.

    15. [15]

      (a) X. Deng, H. Cao, C. Chen, et al., Sci. Bull. 64 (2019) 1280-1284;
      (b) E.E. Alberto, L.M. Muller, M.R. Detty, Organometallics 33 (2014) 5571-5581;
      (c) M. Oba, Y. Okada, K. Nishiyama, et al., Org. Lett. 11 (2009) 1879-1881;
      (d) M. Oba, K. Tanaka, K. Nishiyama, et al., J. Org. Chem. 76 (2011) 4173-4177;
      (e) Y. Okada, M. Oba, A. Arai, et al., Inorg. Chem. 49 (2010) 383-385;
      (f) Y. Chen, X. Deng, X. Jing, et al., Chin. J. Org. Chem. 40 (2020) 4147-4154.

    16. [16]

      (a) X. Jing, D. Yuan, L. Yu, Adv. Synth. Catal. 359 (2017) 1194-1201;
      (b) C. Chen, X. Zhang, H. Cao, et al., Adv. Synth. Catal. 361 (2019) 603-610.

    17. [17]

      (a) A. Nomoto, Y. Higuchi, Y. Kobiki, et al., Mini-Rev. Med. Chem. 13 (2013) 814-823;
      (b) L. Yu, X. Huang, Synlett (2006) 2136-2138;
      (c) A. Ogawa, I. Ogawa, R. Obayashi, et al., J. Org. Chem. 64 (1999) 86-92.

    18. [18]

      K.J. Liu, J.H. Deng, J. Yang, et al., Green Chem. 22 (2020) 433-438.

    19. [19]

      (a) H.J. Reich, Acc. Chem. Res. 12 (1979) 22-30;
      (b) D. Liotta, Acc. Chem. Res. 17 (1984) 28-34.

    20. [20]

      (a) C. Chen, Y. Cao, X. Wu, et al., Chin. Chem. Lett. 31 (2020) 1078-1082;
      (b) Z. Cao, Q. Zhu, Y.W. Lin, et al., Chin. Chem. Lett. 30 (2019) 2132-2138.

    21. [21]

      C. Chen, Z. Cao, X. Zhang, et al., Chin. J. Chem. 38 (2020) 1045-1051.  doi: 10.1002/cjoc.202000089

    22. [22]

      (a) X. Chen, J. Mao, C. Liu, et al., Chin. Chem, Lett. 31 (2020) 3205-3208;
      (b) X. Mao, P. Li, T. Li, et al., Chin. Chem, Lett. 31 (2020) 3276-3278;
      (c) H. Cao, Y. Yang, X. Chen, et al., Chin. Chem. Lett. 31 (2020) 1887-1889;
      (d) H. Cao, R. Qian, L. Yu, et al., Catal. Sci. Technol. 10 (2020) 3113-3121.

  • 加载中
    1. [1]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    2. [2]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    3. [3]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    8. [8]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195

    9. [9]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    10. [10]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    11. [11]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    12. [12]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    13. [13]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    14. [14]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    15. [15]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    18. [18]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    19. [19]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    20. [20]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

Metrics
  • PDF Downloads(6)
  • Abstract views(855)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return