Citation: Yingyuan Hu, Li Li, Xiaoxia Wang, Dongge Ma, Fei Huang. Three-dimensional organic cage with aggregation-induced delayed fluorescence[J]. Chinese Chemical Letters, ;2021, 32(3): 1017-1019. doi: 10.1016/j.cclet.2020.08.038 shu

Three-dimensional organic cage with aggregation-induced delayed fluorescence

    * Corresponding authors.
    E-mail addresses: wangxx@dgut.edu.cn (X. Wang), msfhuang@scut.edu.cn (F. Huang).
  • Received Date: 12 July 2020
    Revised Date: 6 August 2020
    Accepted Date: 24 August 2020
    Available Online: 25 August 2020

Figures(3)

  • A new kind of emissive small-molecular organic cage has been developed via the combination of coupling and condensation reactions, which shows outstanding solubility, structural stability and potential spatial isomeric chirality. Interestingly, through the introduction of proper donor and acceptor units, this emissive organic cage is the first among organic cages to exhibit red aggregation-induced delayed fluorescence with photoluminescence emission at 603 nm. The finding not only expands the types of emissive small-molecular organic cages, but also represents an important step for further development of red delayed fluorescence materials with good solubility and aggregation-induced emission feature.
  • 加载中
    1. [1]

      (a) S.R. Seidel, P.J. Stang, Acc. Chem. Res. 35 (2002) 972-983;
      (b) Y. Jin, C. Yu, R.J. Denman, W. Zhang, Chem. Soc. Rev. 42 (2013) 6634-6654;
      (c) M.M.J. Smulders, I.A. Riddell, C. Browne, J.R. Nitschke, Chem. Soc. Rev. 42 (2013) 1728-1754;
      (d) G. Zhang, M. Mastalerz, Chem. Soc. Rev. 43 (2014) 1934-1947;
      (e) T. Hasell, A.I. Cooper, Nat. Rev. Mater. 1 (2016) 1-14;
      (f) C.S. Diercks, O.M. Yaghi, Science 355 (2017) eaal1585;
      (g) K. Sołtys-Brzostek, M. Terlecki, K. Sokołowski, J. Lewinski, Coord. Chem. Rev. 334 (2017) 199-231;
      (h) D. Zhang, A. Martinez, J.P. Dutasta, Chem. Rev. 117 (2017) 4900-4942.

    2. [2]

      (a) X. Yan, M. Wang, T.R. Cook, et al., J. Am. Chem. Soc. 138 (2016) 4580-4588;
      (b) H. Qu, Y. Wang, Z. Li, et al., J. Am. Chem. Soc. 139 (2017) 18142-18145;
      (c) H.T. Feng, Y.X. Yuan, J.B. Xiong, Y.S. Zheng, B.Z. Tang, Chem. Soc. Rev. 47 (2018) 7452-7476;
      (d) H.T. Feng, X. Zheng, X. Gu, et al., Chem. Mater. 30 (2018) 1285-1290;
      (e) X. Yan, P. Wei, Y. Liu, et al., J. Am. Chem. Soc. 141 (2019) 9673-9679.

    3. [3]

      (a) X. Yan, T.R. Cook, P. Wang, F. Huang, P.J. Stang, Nat. Chem. 7 (2015) 342;
      (b) M.L. Saha, X. Yan, P.J. Stang, Acc. Chem. Res. 49 (2016) 2527-2539;
      (c) D.R. Martir, E. Zysman-Colman, Coord. Chem. Rev. 364 (2018) 86-117.

    4. [4]

      (a) Y. Cui, B. Chen, G. Qian, Coord. Chem. Rev. 273 (2014) 76-86;
      (b) Q. Gao, X. Li, G.H. Ning, et al., Chem. Commun. 54 (2018) 2349-2352;
      (c) E. Jin, J. Li, K. Geng, et al., Nat. Commun. 9 (2018) 1-10;
      (d) H. Kaur, S. Sundriyal, V. Pachauri, et al., Coord. Chem. Rev. 401 (2019) 213077;
      (e) H.Q. Yin, F. Yin, X.B. Yin, Chem. Sci. 10 (2019) 11103-11109.

    5. [5]

      X. Zheng, W. Zhu, C. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 4704-4710.  doi: 10.1021/jacs.8b13724

    6. [6]

      (a) Y. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Soc. Rev. 40 (2011) 5361-5388;
      (b) J. Mei, N.L.C. Leung, R.T.K. Kwok, J.W.Y. Lam, B.Z. Tang, Chem. Rev. 115 (2015) 11718-11940.

    7. [7]

      (a) A. Endo, K. Sato, K. Yoshimura, et al., Appl. Phys. Lett. 98 (2011) 42;
      (b) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492 (2012) 234-238;
      (c) Y. Tao, K. Yuan, T. Chen, et al., Adv. Mater. 26 (2014) 7931-7958;
      (d) M.Y. Wong, E. Zysman-Colman, Adv. Mater. 29 (2017) 1605444;
      (e) Z. Yang, Z. Mao, Z. Xie, et al., Chem. Soc. Rev. 46 (2017) 915-1016;
      (f) T.T. Bui, F. Goubard, M. Ibrahim-Ouali, D. Gigmes, F. Dumur, Beilstein J. Org. Chem. 14 (2018) 282-308;
      (g) X. Cai, S.J. Su, Adv. Funct. Mater. 28 (2018) 1802558;
      (h) Y. Liu, C. Li, Z. Ren, S. Yan, M.R. Bryce, Nat. Rev. Mater. 3 (2018) 18020;
      (i) S.K. Jeon, H.L. Lee, K.S. Yook, J.Y. Lee, Adv. Mater. 31 (2019) 1803524.

    8. [8]

      (a) Q. Zhang, B. Li, S. Huang, et al., Nat. Photon. 8 (2014) 326;
      (b) S. Hirata, Y. Sakai, K. Masui, et al., Nat. Mater. 14 (2015) 330-336.

    9. [9]

      W. Rettig, Angew. Chem. Int. Ed. 25 (1986) 971-988.

    10. [10]

      (a) Y. Dong, J.W.Y. Lam, A. Qin, et al., Appl. Phys. Lett. 91 (2007) 011111;
      (b) J. Huang, N. Sun, Y. Dong, et al., Adv. Funct. Mater. 23 (2013) 2329-2337;
      (c) Z.F. Chang, L.M. Jing, B. Chen, et al., Chem. Sci. 7 (2016) 4527-4536.

    11. [11]

      (a) J. Huang, H. Nie, J. Zeng, et al., Angew. Chem. Int. Ed. 56 (2017) 12971-12976;
      (b) J. Huang, Z. Xu, Z. Cai, et al., J. Mater. Chem. C 7 (2019) 330-339;
      (c) C.M. Tonge, Z.M. Hudson, J. Am. Chem. Soc. 141 (2019) 13970-13976.

  • 加载中
    1. [1]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    4. [4]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    5. [5]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    6. [6]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    7. [7]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    8. [8]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    9. [9]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    10. [10]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    11. [11]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    12. [12]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    13. [13]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    14. [14]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    15. [15]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    16. [16]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    17. [17]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    18. [18]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    19. [19]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(7)
  • Abstract views(1022)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return