Citation: Pengbo Ye, Xuan Liu, Gang Wang, Lei Liu. Nickel(Ⅱ)-catalyzed asymmetric alkylation of acyclic oxocarbenium ions with carboxylic acid derivatives[J]. Chinese Chemical Letters, ;2021, 32(3): 1237-1240. doi: 10.1016/j.cclet.2020.08.034 shu

Nickel(Ⅱ)-catalyzed asymmetric alkylation of acyclic oxocarbenium ions with carboxylic acid derivatives

    * Corresponding author.
    E-mail address: leiliu@sdu.edu.cn (L. Liu).
  • Received Date: 21 June 2020
    Revised Date: 6 August 2020
    Accepted Date: 21 August 2020
    Available Online: 8 September 2020

Figures(6)

  • A nickel(Ⅱ)-catalyzed asymmetric alkylation of acyclic oxocarbenium ions generated in situ from corresponding acetals with carboxylic acid derivatives to prepare β-alkoxyl carbonyl moieties with diverse α-substituents has been disclosed. The method exhibited broad scope of acetals and carboxylic acid derivatives with excellent enantioselectivity and good functional group compatibility, and can be conducted in a gram-scale without obvious loss of efficiency.
  • 加载中
    1. [1]

      L. Krasnova, C.H. Wong, Annu. Rev. Biochem. 85 (2016) 599–630.  doi: 10.1146/annurev-biochem-060614-034420

    2. [2]

      (a) L. Liu, P.S.J. Kaib, A. Tap, B. List, J. Am. Chem. Soc. 138 (2016) 10822–10825;
      (b) Y. Xie, G.J. Cheng, S. Lee, et al., J. Am. Chem. Soc. 138 (2016) 14538–14541;
      (c) C. Zhao, S.B. Chen, D. Seidel, J. Am. Chem. Soc. 138 (2016) 9053–9056;
      (d) K. Kanomata, Y. Toda, Y. Shibata, et al., Chem. Sci. 5 (2014) 3515–3523;
      (e) C.D. Gheewala, J.S. Hirschi, W.H. Lee, et al., J. Am. Chem. Soc. 140 (2018) 3523–3527;
      (f) A. Lee, R.C. Betori, E.A. Crane, K.A. Scheidt, J. Am. Chem. Soc. 140 (2018) 6212–6216;
      (g) R. Zhao, G. Feng, X. Xin, et al., Chin. Chem. Lett. 30 (2019) 1432–1434;
      (h) Z. Wang, Y. Mao, H. Guan, et al., Chin. Chem. Lett. 30 (2019) 1241–1243.

    3. [3]

      (a) S.E. Reisman, A.G. Doyle, E.N. Jacobsen, J. Am. Chem. Soc. 130 (2008) 7198-7199;
      (b) S. Lee, P.S.J. Kaib, B. List, J. Am. Chem. Soc. 139 (2017) 2156–2159;
      (c) P.N. Moquist, T. Kodama, S.E. Schaus, Angew. Chem. Int. Ed. 49 (2010) 7096-7100;
      (d) M.H.D. Srinivas, M.P. Watson, J. Am. Chem. Soc. 133 (2011) 17142–17145;
      (e) F. Benfatti, E. Benedetto, P.G. Cozzi, Chem. Asian J. 5 (2010) 2047–2052;
      (f) M. Rueping, C.M.R. Volla, I. Atodiresei, Org. Lett. 14 (2012) 4642–4645;
      (g) S. Dasgupta, T. Rivas, M.P. Watson, Angew. Chem. Int. Ed. 54 (2015) 14154-14158;
      (h) Z.Y. Han, R. Guo, P.S. Wang, D.F. Chen, H. Xiao, L.Z. Gong, Tetrahedron Lett. 52 (2011) 5963–5967;
      (i) Y. Cui, L.A. Villafane, D.J. Clausen, P.E. Floreancig, Tetrahedron 69 (2013) 7618–7626;
      (j) Z. Meng, S. Sun, H. Yuan, H. Lou, L. Liu, Angew. Chem. Int. Ed. 53 (2014) 543-547;
      (k) X. Pan, X. Liu, S. Sun, Z. Meng, L. Liu, Chin. J. Chem. 36 (2018) 1187–1190;
      (l) X. Xin, X. Pan, Z. Meng, X. Liu, L. Liu, Org. Chem. Front. 6 (2019) 1448–1452;
      (m) H. Guan, L. Chen, L. Liu, Acta Chim. Sinica 76 (2018) 440–444;
      (n) A. Gualandi, G. Rodeghiero, P.G. Cozzi, Asian J. Org. Chem. 7 (2018) 1957-1981;
      (o) M. Braun, W. Kotter, Angew. Chem. Int. Ed. 43 (2014) 514–517;
      (p) L. Wang, D. Yang, D. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 9088–9092.

    4. [4]

      (a) N. Umebayashi, Y. Hamashima, D. Hashizume, M. Sodeoka, Angew. Chem. Int. Ed. 47 (2008) 4196–4199;
      (b) S. Kobayashi, K. Arai, T. Yamakawa, et al., Adv. Synth. Catal. 353 (2011) 1927–1932;
      (c) C.D. Gheewala, B.E. Collins, T.H. Lambert, Science 351 (2016) 961–965;
      (d) S.M. Banik, A. Lvvina, A.M. Hyde, E.N. Jacobsen, Science 358 (2017) 761–764;
      (e) C. Lu, X. Su, P.E. Floreancig, J. Org. Chem. 78 (2013) 9366–9367.

    5. [5]

      (a) D.A. Evans, J. Bartroli, T.L. Shih, J. Am. Chem. Soc. 103 (1981) 2127–2129;
      (b) D.A. Evans, J.M. Takacs, L.R. McGee, et al., Pure Appl. Chem. 53 (1981) 1109-1127;
      (c) M.M. Heravi, V. Zadsirjan, Tetrahedron Asymmetry 24 (2013) 1149–1188.

    6. [6]

      (a) A. Cosp, P. Romea, P. Talavera, et al., Org. Lett. 3 (2001) 615–617;
      (b) T.E. Smith, W.H. Kuo, E.P. Balskus, et al., J. Org. Chem. 73 (2008) 142–150;
      (c) T.E. Smith, W.H. Kuo, V.D. Bock, et al., Org. Lett. 9 (2007) 1153–1155;
      (d) K.K. Pulukuri, T.K. Chakraborty, Org. Lett. 14 (2012) 2858–2861;
      (e) M.T. Crimmins, C.O. Hughes, Org. Lett. 14 (2012) 2168–2171;
      (f) J. Fernández-Valparis, P. Romea, F. Urpí, M. Font-Bardia, Org. Lett. 19 (2017) 6400–6403;
      (g) J.M. Romo, E. Gálvez, I. Nubiola, et al., Adv. Synth. Catal. 355 (2013) 2781-2786;
      (h) S.C.D. Kennington, J.M. Romo, P. Romea, F. Urpí, Org. Lett. 18 (2016) 3018-3021;
      (i) T.K. Kuilya, R.K. Goswami, Org. Lett. 19 (2017) 2366–2369.

    7. [7]

      (a) D.A. Evans, R.J. Thomson, J. Am. Chem. Soc. 127 (2005) 10506–10507;
      (b) G. Wang, X. Xin, Z. Wang, et al., Nature Commun. 10 (2019) 559–567.

    8. [8]

      D.A. Evans, C.W. Downey, J.T. Shaw, J.S. Tedrow, Org. Lett. 4 (2002) 1127–1130.  doi: 10.1021/ol025553o

    9. [9]

      (a) F. Brotzel, B. Kempf, T. Singer, H. Zipse, H. Mayr, Chem. Eur. J. 13 (2007) 336-345;
      (b) J. Ammer, M. Baidya, S. Kobayashi, H. Mayr, J. Phys. Org. Chem. 23 (2010) 1029–1035.

    10. [10]

      H. Fujioka, T. Okitsu, Y. Sawama, et al., J. Am. Chem. Soc. 128 (2006) 5930–5938.  doi: 10.1021/ja060328d

  • 加载中
    1. [1]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    2. [2]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    3. [3]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    4. [4]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    5. [5]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    6. [6]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    7. [7]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    8. [8]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    9. [9]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    12. [12]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    16. [16]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    17. [17]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    18. [18]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(4)
  • Abstract views(878)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return