Citation: En-Ze Lin, Yin Xu, Kegong Ji, Long-Wu Ye. Recent advances towards catalytic asymmetric Conia-ene-type reactions[J]. Chinese Chemical Letters, ;2021, 32(3): 954-962. doi: 10.1016/j.cclet.2020.08.012 shu

Recent advances towards catalytic asymmetric Conia-ene-type reactions

    * Corresponding author at: The Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
    ** Corresponding author.
    E-mail addresses: jikegong@nwsuaf.edu.cn (K. Ji), longwuye@xmu.edu.cn (L.-W. Ye).
    1 These authors contributed equally to this work.
  • Received Date: 6 July 2020
    Revised Date: 30 July 2020
    Accepted Date: 10 August 2020
    Available Online: 12 August 2020

Figures(24)

  • Conia-ene reactions, as a type of ene reactions, have not become a remarkable focus until the beginning of 21st century, when Lewis acids served as powerful catalysts and found an increasingly broad utilization in this field. Consequently, the catalytic Conia-ene reactions have gained great significance in synthetic chemistry due to their high efficiency and atom economy on the construction of valuable cyclic molecules. During the past two decades, the rapid development of transition-metal catalysis and organocatalysis has imposed a profound impact on the exploration of asymmetric Conia-ene reactions. As a result, several strategies have been developed and applied successfully. Organized on the basis of the catalytic system, this review comprehensively presents a summary of recent progress achieved in this emerging domain, aimed at highlighting the reactions' features, practicalities, and the mechanistic rationale is presented where possible.
  • 加载中
    1. [1]

      (a) M.L. Clarke, M.B. France, Tetrahedron 64 (2008) 9003-9031;
      (b) J.S. Johnson, D.A. Evans, Acc. Chem. Res. 33 (2000) 325-335;
      (c) D.J. Berrisford, C. Bolm, Angew. Chem. Int. Ed. Engl. 34 (1995) 1717-1719;
      (d) K. Mikami, M. Shimuzu, Chem. Rev. 92 (1992) 1021-1050;
      (e) B.B. Snider, Acc. Chem. Res. 13 (1980) 426-432.

    2. [2]

      J.M. Conia, P. Le Perchec, Synthesis (1975) 1-19.

    3. [3]

      (a) D. Hack, M. Blümel, P. Chauhan, A.R. Philipps, D. Enders, Chem. Soc. Rev. 44 (2015) 6059-6093;
      (b) F. Dénès, A. Pérez-Luna, F. Chemla, Chem. Rev. 110 (2010) 2366-2447.

    4. [4]

      J.J. Kennedy-Smith, S.T. Staben, F.D. Toste, J. Am. Chem. Soc. 126(2004) 4526-4527.  doi: 10.1021/ja049487s

    5. [5]

      B.K. Corkey, F.D. Toste, J. Am. Chem. Soc. 127(2005) 17168-17169.  doi: 10.1021/ja055059q

    6. [6]

      K. Mikami, M. Hatano, Proc. Natl. Acad. Sci. U. S. A. 101(2004) 5767-5769.  doi: 10.1073/pnas.0307217101

    7. [7]

      A. Matsuzawa, T. Mashiko, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 50(2011) 7616-7619.  doi: 10.1002/anie.201102114

    8. [8]

      S. Suzuki, E. Tokunaga, D.S. Reddy, et al., Angew. Chem. Int. Ed. 51(2012) 4131-4135.  doi: 10.1002/anie.201201060

    9. [9]

      W. Fang, M. Presset, A. Guérinot, et al., Chem. Eur. J. 20(2014) 5439-5446.  doi: 10.1002/chem.201304831

    10. [10]

      B.K. Corkey, F.D. Toste, J. Am. Chem. Soc. 129(2007) 2764-2765.  doi: 10.1021/ja068723r

    11. [11]

      (a) J. Sun, D. Shi, M. Ma, et al., J. Nat. Prod. 68 (2005) 915-919;
      (b) Y. Shizuri, K. Yamada, Phytochemistry 24 (1985) 1385-1386.

    12. [12]

      J.F. Brazeau, S. Zhang, I. Colomer, B.K. Corkey, F.D. Toste, J. Am. Chem. Soc. 134(2012) 2742-2749.  doi: 10.1021/ja210388g

    13. [13]

      E.H. Huang, Z.X. Zhang, S.H. Ye, et al., Chin. J. Chem. 38(2020) 1086-1090.  doi: 10.1002/cjoc.202000218

    14. [14]

      S. Shaw, J.D. White, J. Am. Chem. Soc. 136(2014) 13578-13581.  doi: 10.1021/ja507853f

    15. [15]

      (a) D.S. Kim, W.J. Park, C.H. Jun, Chem. Rev. 117 (2017) 8977-9015;
      (b) S. Afewerki, A. Córdova, Chem. Rev. 116 (2016) 13512-13570;
      (c) D.F. Chen, Z.Y. Han, X.L. Zhou, L.Z. Gong, Acc. Chem. Res. 47 (2014) 2365-2377;
      (d) Z. Du, Z. Shao, Chem. Soc. Rev. 42 (2013) 1337-1378;
      (e) W. Cao, X. Liu, X. Feng, Chin. Chem. Lett. 29 (2018) 1201-1208.

    16. [16]

      (a) T. Yang, A. Ferrali, L. Campbell, D.J. Dixon, Chem. Commun. (2008) 2923-2925;
      (b) J.T. Binder, B. Crone, T.T. Haug, H. Menz, S.F. Kirsch, Org. Lett. 10 (2008) 1025-1028.

    17. [17]

      T. Yang, A. Ferrali, F. Sladojevich, L. Campbell, D.J. Dixon, J. Am. Chem. Soc. 131(2009) 9140-9141.  doi: 10.1021/ja9004859

    18. [18]

      B. Montaignac, C. Praveen, M.R. Vitale, V. Michelet, V. Ratovelomanana-Vidal, Chem. Commun. 48(2012) 6559-6561.

    19. [19]

      M. Li, S. Datta, D.M. Barber, D.J. Dixon, Org. Lett. 14(2012) 6350-6353.  doi: 10.1021/ol303128s

    20. [20]

      M. Blümel, D. Hack, L. Ronkartz, C. Vermeeren, D. Enders, Chem. Commun. 53(2017) 3956-3959.  doi: 10.1039/C7CC01807J

    21. [21]

      (a) J. Bonjoch, F. Diaba, B. Bradshaw, Synthesis (2011) 993-1018;
      (b) H. Sun, G. Wu, X. Xie, Chin. Chem. Lett. 30 (2019) 1538-1540;
      (c) H. Wang, Q. Dong, Q. Xie, P. Tang, Chin. Chem. Lett. 31 (2020) 685-688.

    22. [22]

      (a) R.R. Liu, B.L. Li, J. Lu, et al., J. Am. Chem. Soc. 138 (2016) 5198-5201;
      (b) A.D.G. Yamagata, S. Datta, K.E. Jackson, et al., Angew. Chem. Int. Ed. 54 (2015) 4899-4903;
      (c) B. Bradshaw, C. Parra, J. Bonjoch, Org. Lett. 15 (2013) 2458-2461.

    23. [23]

      R. Manzano, S. Datta, R.S. Paton, D.J. Dixon, Angew. Chem. Int. Ed. 56(2017) 5834-5838.  doi: 10.1002/anie.201612048

    24. [24]

      (a) D.W. Stephan, J. Am. Chem. Soc. 137 (2015) 10018-10032;
      (b) D.W. Stephan, Acc. Chem. Res. 48 (2015) 306-316;
      (c) D.W. Stephan, G. Erker, Angew. Chem. Int. Ed. 54 (2015) 6400-6441;
      (d) M. Oestreich, J. Hermeke, J. Mohr, Chem. Soc. Rev. 44 (2015) 2202-2220;
      (e) J. Zhang, Y. Shao, Y. Li, Y. Liu, Z. Ke, Chin. Chem. Lett. 29 (2018) 1226-1232;
      (f) N. Li, W.X. Zhang, Chin. J. Chem. (2020), doi: http://dx.doi.org/10.1002/cjoc.202000027.

    25. [25]

      M. Cao, A. Yesilcimen, M. Wasa, J. Am. Chem. Soc. 141(2019) 4199-4203.  doi: 10.1021/jacs.8b13757

    26. [26]

      (a) T. Horibe, M. Sakakibara, R. Hiramatsu, K. Takeda, K. Ishihara, Angew. Chem. Int. Ed. (2020), doi: http://dx.doi.org/10.1002/anie.202007180;
      (b) S. Putatunda, J.V. Alegre-Requena, M. Meazza, et al., Chem. Sci. 10 (2019) 4107-4115;
      (c) D.Hack, A.B.Dürr, K.Deckers, etal., Angew.Chem.Int.Ed.55 (2016)1797-1800;
      (d) L. Deiana, L. Ghisu, O. Córdova, et al., Synthesis (2014) 1303-1310;
      (e)W. Sun, G.Zhu, C.Wu, L.Hong, R.Wang, Chem.Eur.J.18 (2012)13959-13963;
      (f) S. Lin, G.L. Zhao, L. Deiana, et al., Chem. Eur. J. 16 (2010) 13930-13934;
      (g) G.L. Zhao, F. Ullah, L. Deiana, et al., Chem. Eur. J. 16 (2010) 1585-1591.

    27. [27]

      B.L. Li, W.Y. Gao, H. Li, et al., Chin. J. Chem. 37(2019) 63-70.  doi: 10.1002/cjoc.201800420

    28. [28]

      Y. Xu, Q. Sun, T.D. Tan, et al., Angew. Chem. Int. Ed. 58(2019) 16252-16259.  doi: 10.1002/anie.201908495

    29. [29]

      (a) B. Zhou, T.D. Tan, X.Q. Zhu, M. Shang, L.W. Ye, ACS Catal. 9 (2019) 6393-6406;
      (b) F. Pan, C. Shu, L.W. Ye, Org. Biomol. Chem. 14 (2016) 9456-9465;
      (c) G. Evano, C. Theunissen, M. Lecomte, Aldrichimica Acta 48 (2015) 59-70;
      (d) X.N. Wang, H.S. Yeom, L.C. Fang, et al., Acc. Chem. Res. 47 (2014) 560-578;
      (e) K.A. DeKorver, H. Li, A.G. Lohse, et al., Chem. Rev. 110 (2010) 5064-5106;
      (f) G. Evano, A. Coste, K. Jouvin, Angew. Chem. Int. Ed. 49 (2010) 2840-2859;
      (g) K. Wang, Z. Zhuang, H. Ti, et al., Chin. Chem. Lett. 31 (2020) 1564-1567;
      (h) C. Chen, S. Cui, Chin. Chem. Lett. 32 (2021) 421-424.

  • 加载中
    1. [1]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    4. [4]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    5. [5]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    6. [6]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    10. [10]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    11. [11]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    12. [12]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    13. [13]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    14. [14]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    15. [15]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    16. [16]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    17. [17]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    18. [18]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    19. [19]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    20. [20]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

Metrics
  • PDF Downloads(45)
  • Abstract views(1357)
  • HTML views(312)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return