Citation: Jing-Jing Ai, Jian Li, Shun-Jun Ji, Shun-Yi Wang. One-pot two-step reaction of selenosulfonate with isocyanides and allyl alcohol under aqueous conditions: Atom-economic synthesis of selenocarbamates and allyl sulfones[J]. Chinese Chemical Letters, ;2021, 32(2): 721-724. doi: 10.1016/j.cclet.2020.07.007 shu

One-pot two-step reaction of selenosulfonate with isocyanides and allyl alcohol under aqueous conditions: Atom-economic synthesis of selenocarbamates and allyl sulfones

    * Corresponding author.
    E-mail address: shunyi@suda.edu.cn (S.-Y. Wang).
  • Received Date: 3 June 2020
    Revised Date: 17 June 2020
    Accepted Date: 4 July 2020
    Available Online: 4 July 2020

Figures(2)

  • In many reactions involving selenosulfonate or thiosulfonate, the sulfone group often leaves in form of benzenesulfinic acid or sodium benzenesulfinate. A one-pot two-step reaction of selenosulfonate with isocyanides and allyl alcohol under aqueous conditions to afford selenocarbamates and allyl sulfone compounds is reported. The sulfinic acid as the first-step side product is converted to the allyl sulfone compound by water promoted reaction with allyl alcohol. Water acts as both an oxygen source of selenocarbamates and as a promoter to drive the second step reaction. The reactions have the advantages of mild conditions, green, environment-friendly, and high atomic economy.
  • 加载中
    1. [1]

      (a) C.W. Nogueira, G. Zeni, J.B.T. Rocha, Chem. Rev. 104 (2004) 6255-6285;
      (b) A.D. Giuseppe, R. Castarlenas, J.J. Pérez-Torrenté, et al., J. Am. Chem. Soc.134 (2012) 8171-8183;
      (c) A. Ferry, T. Billard, B.R. Langlois, E. Bacqu, Angew. Chem. Int. Ed. 48 (2009) 8551-8555;
      (d) G. Danoun, B. Bayarmagnai, M.F. Gruenberg, L.J. Goossen, Chem. Sci. 5 (2014) 1312-1316;
      (e) C.P. Zhang, D.A. Vicic, J. Am. Chem. Soc. 134 (2012) 183-185;
      (f) D. Yang, K. Yan, W. Wei, et al., J. Org. Chem. 80 (2015) 6083-6092;
      (g) G. Teverovskiy, D.S. Surry, S.L. Buchwald, Angew. Chem. Int. Ed. 50 (2011) 7312-7314.

    2. [2]

      (a) P.C. Srivastava, R.K. Robins, J. Med. Chem. 26 (1983) 445-448;
      (b) G. Mugesh, W.W. Mont, H. Sies, Chem. Rev. 101 (2001) 2125-2179;
      (c) A. Heredia, A.B. Peñéñory, J. Org. Chem. 13 (2017) 910-918;
      (d) Y. Li, M. Wang, X. Jiang, ACS Catal. 7 (2017) 7587-7592;
      (e) E.A. Ilardi, E. Vitaku, J.T. Njardarson, J. Med. Chem. 57 (2014) 2832-2842;
      (f) Y. Li, M. Wang, X. Jiang, ACS Catal. 7 (2017) 7587-7592.

    3. [3]

      H. Takahashia, A. Nishinaa, R. Fukumotoa, et al., Eur. J. Pharm. Sci. 24 (2005) 291-295.  doi: 10.1016/j.ejps.2004.11.004

    4. [4]

      (a) B.K. Sarma, D. Manna, M. Minoura, G. Mugesh, J. Am. Chem. Soc. 132 (2010) 5364-5374;
      (b) B.K. Sarma, G. Mugesh, Chem. Eur. J. 14 (2008) 10603-10614.

    5. [5]

      K. Takimiya, I. Osaka, T. Mori, M. Nakano, Acc. Chem. Res. 47 (2014) 1493-1502.  doi: 10.1021/ar400282g

    6. [6]

      (a) Y. Fang, T. Rogge, L. Ackermann, S.Y. Wang, S.J. Ji, Nat. Comm. 9 (2018) 2240;
      (b) H. Liu, Y. Fang, L. Yin, S.Y. Wang, S.J. Ji, J. Org. Chem. 82 (2017) 10866-10874;
      (c) H. Liu, Y. Fang, S.Y. Wang, S.J. Ji, Org. Lett. 20 (2018) 930-933;
      (d) C. Liu, Y. Fang, S.Y. Wang, S.J. Ji, Org. Lett. 20 (2018) 6112-6116.

    7. [7]

      (a) J.H. Li, Q. Huang, W. Rao, S.Y. Wang, S.J. Ji, Chem. Commun. 55 (2019) 7808-7811;
      (b) J.H. Li, Q. Huang, S.Y. Wang, S.J. Ji, Org. Lett. 20 (2018) 4704-4708;
      (c) B.B. Liu, X.Q. Chu, H. Liu, et al., J. Org. Chem. 82 (2017) 10174-10180.

    8. [8]

      S. Fujiwara, K. Okada, Y. Shikano, et al., J. Org. Chem. 72 (2007) 273-276.  doi: 10.1021/jo0615908

    9. [9]

      J. Xu, R.Y. Liu, C.S. Yeung, S.L. Buchwald, ACS Catal. 9 (2019) 6461-6466.  doi: 10.1021/acscatal.9b01913

    10. [10]

      (a) X. Ma, S.B. Herzon, Beilstein, J. Org. Chem. 14 (2018) 2259-2265;
      (b) A.P. Schaffner, F. Montermini, D. Pozzi, et al., Adv. Synth. Catal. 350 (2008) 1163-1167;
      (c) X. Ma, S.B. Herzon, Chem. Sci. 6 (2015) 6250-6255;
      (d) P. Mampuys, Y. Zhu, T. Vlaar, et al., Angew. Chem. Int. Ed. 53 (2014) 12849-12854;
      (e) J. Li, D. Zhu, L. Lv, C.J. Li, Chem. Sci. 9 (2018) 5781-5786;
      (f) W. Kong, C. Yu, H. An, Q. Song, Org. Lett. 20 (2018) 4975-4978;
      (g) B. Xu, D. Li, L. Lu, et al., Org. Chem. Front. 5 (2018) 2163-2166.

    11. [11]

      X. Peng, C. Ma, C.H. Tung, Z. Xu, Org. Lett. 18 (2016) 4154-4157.  doi: 10.1021/acs.orglett.6b02027

    12. [12]

      Y. Fang, C. Liu, F. Wang, et al., Org. Chem. Front. 6 (2019) 660-663.

    13. [13]

      (a) S. Oida, Y. Tajima, T. Konosu, et al., Chem. Pharm. Bull. 48 (2000) 694-707;
      (b) N.A. McGrath, M. Brichacek, J.T. Njardarson, J. Chem, Educ. 87 (2010) 1348-1349;
      (c) A.B. Pritzius, B. Breit, Angew. Chem. Int. Ed. 54 (2015) 3121-3125.

    14. [14]

      M. Lee, M. Ikejiri, D. Klimpel, et al., ACS Med. Chem. Lett. 3 (2012) 490-495.  doi: 10.1021/ml300050b

    15. [15]

      (a) T. Song, H. Li, F. Wei, C.H. Tung, Z. Xu, Tetrahedron Lett. 60 (2019) 916-919;
      (b) H. Qian, K. Sulfones, X. Huang, Synthesis 12 (2006) 1934-1936;
      (c) S. Huang, Z. Chen, H. Mao, et al., Org. Biomol. Chem. 17 (2019) 1121-1129;
      (d) R.A. Gancarz, J.L. Kice, J. Org. Chem. 46 (1981) 4899-4906;
      (e) C. Rao, S. Maia, Q. Song, Chem. Commun. 54 (2018) 5964-5967.

    16. [16]

      Y.L. Shi, M. Shi, Org. Biomol. Chem. 3 (2005) 1620-1621.  doi: 10.1039/b501942g

    17. [17]

      S. Huang, N. Thirupathi, C.H. Tung, Z. Xu, J. Org, Chem. 83 (2018) 9449-9455.

    18. [18]

      Z. Yuan, H.Y. Wang, X. Mu, et al., J. Am. Chem. Soc. 137 (2015) 2468-2471.  doi: 10.1021/ja5131676

    19. [19]

      P. Xie, J. Wang, Y. Liu, et al., Nat. Commun. 9 (2018) 1321.  doi: 10.1038/s41467-018-03698-8

  • 加载中
    1. [1]

      Chun-Ying XuXiao-Lin LuanYuan-Yuan CuiCheng-Xiong Yang . One-pot in situ doping synthesis of phenylboronic acid-functionalized magnetic-cyclodextrin microporous organic network for specific enrichment and detection of sulfonylurea herbicides. Chinese Chemical Letters, 2025, 36(9): 110937-. doi: 10.1016/j.cclet.2025.110937

    2. [2]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    3. [3]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    4. [4]

      Min FuRuihan WangWenqiang LiuSen ZhouChunhong ZhongYaohao LiPan HeXin LiShiying ShangZhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542

    5. [5]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    6. [6]

      Wenrui JiaChenghuan QiaoDongfang ZhaoJuanshan DuYaohua WuYongqi LiangQinglian WuXiaochi FengHuazhe WangWanqian Guo . Insight into nitrogen-doped biochar prepared from Chinese medicine compound residue for peracetic acid activation in sulfamethoxazole degradation: Electron transfer mechanism. Chinese Chemical Letters, 2025, 36(11): 110886-. doi: 10.1016/j.cclet.2025.110886

    7. [7]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    8. [8]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    9. [9]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    10. [10]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

    11. [11]

      Peng GaoHua QiuHuan ChengZeyu DuXiao ChenXing TanChenxi CaiQihong ZhangTong YangNan LyuQiufen TuXingyi LiLei LuNan Huang . Robust and versatile surface via in situ dynamic reassembly of polydopamine under strong alkaline conditions. Chinese Chemical Letters, 2025, 36(10): 110746-. doi: 10.1016/j.cclet.2024.110746

    12. [12]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    13. [13]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    14. [14]

      Yixin SunKeke YuXiuchun GuoLanlan ZongZhonggui HeXiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393

    15. [15]

      Xia Gao Shuaikang Sang Enquan Zhu Lihua Cai Chang Liu Ferdi Karadas Chao Zhang Jingxiang Low Yujie Xiong . Highly dispersed Ni–O site on Ni catalysts for efficient and durable light-driven dry reforming of CH4 at ambient conditions. Chinese Journal of Structural Chemistry, 2025, 44(5): 100570-100570. doi: 10.1016/j.cjsc.2025.100570

    16. [16]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    17. [17]

      Dongsheng YangZixin LiYaoyao LianZiyao FuTianjiao LiPengtao MaGuoping Yang . A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone. Chinese Chemical Letters, 2025, 36(3): 109717-. doi: 10.1016/j.cclet.2024.109717

    18. [18]

      Xinyu GuJun YuHuiyu SunNannan ZhangZhengying WuYukou Du . One-step synthesis of trimetallic PdCuNi porous nanoflowers for enhanced alcohol oxidation. Chinese Chemical Letters, 2026, 37(1): 111756-. doi: 10.1016/j.cclet.2025.111756

    19. [19]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    20. [20]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

Metrics
  • PDF Downloads(13)
  • Abstract views(2325)
  • HTML views(273)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return