Citation: Xiong Sun, Congqing Zhu. Synthesis, characterization and reactivity of a neutral antimony(III) complex[J]. Chinese Chemical Letters, ;2021, 32(2): 717-720. doi: 10.1016/j.cclet.2020.07.006 shu

Synthesis, characterization and reactivity of a neutral antimony(III) complex

    * Corresponding author.
    E-mail address: zcq@nju.edu.cn (C. Zhu).
  • Received Date: 18 May 2020
    Revised Date: 29 June 2020
    Accepted Date: 4 July 2020
    Available Online: 4 July 2020

Figures(8)

  • Pincer complexes are widely used in organometallic and coordination chemistry. The role of antimony as a central donor atom in pincer ligands has been extensively explored in recent years. Although phenylenediamine derived PXP (X = B, Al, C, Si, Ge, Sn, N) type ligands exhibit diverse reactivity, analogues species based on antimony have been reported less frequently. Herein, we report a new PSbP complex and evaluate its reactivity. These species will broaden the family of phenylenediamine derived pincer complexes.
  • 加载中
    1. [1]

      (a) C.J. Moulton, B.L. Shaw, J. Chem. Soc. Dalton Trans. (1976) 1020-1024;
      (b) G. Van Koten, K. Timmer, J.G. Noltes, A.L. Spek, J. Chem. Soc. Chem. Commun. (1978) 250-252.

    2. [2]

      (a) J. Choi, A.H.R. MacArthur, M. Brookhart, A.S. Goldman, Chem. Rev. 111 (2011) 1761-1779;
      (b) E. Peris, R.H. Crabtree, Chem. Soc. Rev. 47 (2018) 1959-1968;
      (c) H.A. Younus, N. Ahmad, W. Su, F. Verpoort, Coord. Chem. Rev. 276 (2014) 112-152.

    3. [3]

      (a) D. Morales-Morales, C.M. Jensen, The Chemistry of Pincer Compounds, Elsevier, Amsterdam, 2007;
      (b) G. van Koten, D. Milstein, Organometallic Pincer Chemistry, SpringerVerlag, Berlin-Heidelberg, 2013;
      (c) G.R. Freeman, J.A.G. Williams, Metal complexes of pincer ligands: excited states, photochemistry, and luminescence, in: G. van Koten, D. Milstein (Eds. ), Organometallic Pincer Chemistry, Springer, Berlin, 2013, pp. 89-129;
      (d) C. Gunanathan, D. Milstein, Chem. Rev. 114 (2014) 12024-12087;
      (e) H. Valdes, L. Gonzalez-Sebastian, D. Morales-Morales, J. Organomet, Chem. 845 (2017) 229-257.

    4. [4]

      (a) H.M. Lee, J.Y. Zeng, C.H. Hu, M.T. Lee, Inorg. Chem. 43 (2004) 6822-6829;
      (b) T. Steinke, B.K. Shaw, H. Jong, et al., J. Am. Chem. Soc. 131 (2009) 10461-10466;
      (c) B.K. Shaw, B.O. Patrick, M.D. Fryzuk, Organometallics 31 (2012) 783-786.

    5. [5]

      A. Plikhta, A. Pothig, E. Herdtweck, B. Rieger, Inorg. Chem. 54 (2015) 9517-9528.

    6. [6]

      A. Eizawa, K. Arashiba, H. Tanaka, et al., Nat. Commun. 8 (2017) 1-12.

    7. [7]

      Y. Segawa, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 131 (2009) 9201-9203.

    8. [8]

      (a) M. Hasegawa, Y. Segawa, M. Yamashita, K. Nozaki, Angew. Chem. Int. Ed. 51 (2012) 6956-6960;
      (b) M. Yamashita, Bull. Chem. Soc. Japan. 89 (2016) 269-281;
      (c) E.H. Kwan, H. Ogawa, M. Yamashita, ChemCatChem 9 (2017) 2457-2462.

    9. [9]

      T.P. Lin, J.C. Peters, J. Am. Chem. Soc. 135 (2013) 15310-15313.

    10. [10]

      T.P. Lin, J.C. Peters, J. Am. Chem. Soc. 136 (2014) 13672-13683.  doi: 10.1021/ja504667f

    11. [11]

      (a) L.S. Dixon, A.F. Hill, A. Sinha, J.S. Ward, Organometallics 33 (2014) 653-658;
      (b) Z. Xiong, X. Li, S. Zhang, Y. Shi, H. Sun, Organometallics 35 (2016) 357-363;
      (c) B.J. Frogley, A.F. Hill, M. Sharma, A. Sinha, J.S. Ward, Chem. Commun. 56 (2020) 3532-3535.

    12. [12]

      (a) L. Álvarez-Rodríguez, J. Brugos, J.A. Cabeza, et al., Chem. Commun. 53 (2017) 893-896;
      (b) J. Brugos, J.A. Cabeza, P. Garcia-Alvarez, E. Pe'rez-Carreño, Organometallics 37 (2018) 1507-1514;
      (c) J. Brugos, J.A. Cabeza, P. García-Álvarez, E. Pérez-Carreño, D. Polo, Dalton Trans. 47 (2018) 4534-4544.

    13. [13]

      (a) Y. Tulchinsky, M.A. Iron, M. Botoshansky, M. Gandelman, Nat. Chem. 3 (2011) 525-531;
      (b) Y. Tulchinsky, S. Kozuch, P. Saha, et al., Chem. Sci. 5 (2014) 1305-1311.

    14. [14]

      (a) G.S. Day, B. Pan, D.L. Kellenberger, B.M. Foxman, C.M. Thomas, Chem. Commun. 47 (2011) 3634-3636;
      (b) A.M. Poitras, S.E. Knight, M.W. Bezpalko, B.M. Foxman, C.M. Thomas, Angew. Chem. Int. Ed. 57 (2018) 1497-1500.

    15. [15]

      S. Morisako, S. Watanabe, S. Ikemoto, et al., Angew. Chem. Int. Ed. 58 (2019) 15031-15035.

    16. [16]

      (a) S. Kobayashi, T. Busujima, S. Nagayama, Chem. Eur. J. 6 (2000) 3491-3494;
      (b) S. Thibaudeau, A. Martin-Mingot, M.P. Jouannetaud, O. Karam, F. Zunino, Chem. Commun. (2007) 3198-3200;
      (c) A. Saito, M. Umakoshi, N. Yagyu, Y. Hanzawa, Org. Lett. 10 (2008) 1783-1785;
      (d) A. Saito, J. Kasai, Y. Odaira, H. Fukaya, Y. Hanzawa, J. Org. Chem. 74 (2009) 5644-5647;
      (e) F. Liu, A. Martin-Mingot, M.P. Jouannetaud, F. Zunino, S. Thibaudeau, Org. Lett. 12 (2010) 868-871.

    17. [17]

      (a) J.S. Jones, F.P. Gabbai, Acc. Chem. Res. 49 (2016) 857-867;
      (b) D. You, F.P. Gabbaï, Trends in Chemistry 1 (2019) 485-496.

    18. [18]

      (a) C.R. Wade, F.P. Gabbaï, Angew. Chem. Int. Ed. 50 (2011) 7369-7372;
      (b) C.R. Wade, I.S. Ke, F.P. Gabbaï, Angew. Chem. Int. Ed. 51 (2012) 478-481;
      (c) I.S. Ke, F.P. Gabbaï, Inorg. Chem. 52 (2013) 7145-7151;
      (d) I.S. Ke, J.S. Jones, F.P. Gabbaï, Angew. Chem. Int. Ed. 53 (2014) 2633-2637;
      (e) J.S. Jones, C.R. Wade, F.P. Gabbaï, Angew. Chem. Int. Ed. 53 (2014) 8876-8879;
      (f) H. Yang, F.P. Gabbaï, J. Am. Chem. Soc. 137 (2015) 13425-13432;
      (g) J.S. Jones, C.R. Wade, F.P. Gabbaï, Organometallics 34 (2015) 2647-2654;
      (h) J.S. Jones, F.P. Gabbai, Chem. Eur. J. 23 (2017) 1136-1144;
      (i) D. You, F.P. Gabbaï, J. Am. Chem. Soc. 139 (2017) 6843-6846.

    19. [19]

      N.K. Srungavruksham, Y.H. Liu, M.K. Tsai, C.W. Chiu, Inorg. Chem. 59 (2020) 4468-4474.

    20. [20]

      (a) X. Sun, Q. Zhu, Z. Xie, et al., Chem. Eur. J. 25 (2019) 14295-14299;
      (b) X. Sun, W. Su, K. Shi, Z. Xie, C. Zhu, Chem. Eur. J. 26 (2020) 5354-5359.

    21. [21]

      (a) G. Feng, M. Zhang, D. Shao, et al., Nat. Chem. 11 (2019) 248-253;
      (b) G. Feng, M. Zhang, P. Wang, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 17654-17658;
      (c) X. Xin, C. Zhu, Dalton Trans. 49 (2020) 603-607;
      (d) G. Feng, K.N. McCabe, S. Wang, L. Maron, C. Zhu, Chem. Sci. (2020), doi: http://dx.doi.org/10.1039/D0SC00389A.

    22. [22]

      D. Gudat, T. Gans-Eichler, M. Nieger, Chem. Commun. (2004) 2434-2435.

    23. [23]

      P. Pyykkö, M. Atsumi, Chem. Eur. J. 15 (2009) 186-197.

    24. [24]

      (a) D. Gudat, A. Haghverdi, M. Nieger, Angew. Chem. Int. Ed. 39 (2000) 3084-3086;
      (b) S. Harder, J. Brettar, Angew. Chem. Int. Ed. 45 (2006) 3474-3478;
      (c) J. Spielmann, D. Piesik, B. Wittkamp, G. Jansen, S. Harder, Chem. Commun. (2009) 3455-3456;
      (d) M. Arrowsmith, T.J. Hadlington, M.S. Hill, G. Kociok-Köhn, Chem. Commun. 48 (2012) 4567-4569;
      (e) S. Schnitzler, T.P. Spaniol, L. Maron, J. Okuda, Chem. Eur. J. 21 (2015) 11330-11334;
      (f) C.C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 53 (2014) 3342-3346;
      (g) C.C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 54 (2015) 190-194;
      (h) C.C. Chong, R. Kinjo, Angew. Chem. Int. Ed. 54 (2015) 12116-12120;
      (i) Z. Yang, M. Zhong, X. Ma, et al., Angew. Chem. Int. Ed. 54 (2015) 10225-10229;
      (j) J.K. Pagano, J.M. Dorhout, R. Waterman, K.R. Czerwinski, J.L. Kiplinger, Chem. Commun. 51 (2015) 17379-17381;
      (k) S. Bagherzadeh, N.P. Mankad, Chem. Commun. 52 (2016) 3844-3846.

    25. [25]

      K.M. Marczenko, J.A. Zurakowski, K.L. Bamford, J.W. MacMillan, S.S. Chitnis, Angew. Chem. Int. Ed. 58 (2019) 18096-18101.

    26. [26]

      N. Hara, T. Saito, K. Semba, et al., J. Am. Chem. Soc. 140 (2018) 7070-7073.

  • 加载中
    1. [1]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    2. [2]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    3. [3]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    6. [6]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    7. [7]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    12. [12]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    13. [13]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    14. [14]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    15. [15]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    20. [20]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

Metrics
  • PDF Downloads(10)
  • Abstract views(1207)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return