Citation: Xiai Luo, Wenguang Li, Haiyan Lu, Guobo Deng, Yuan Yang, Chunming Yang, Yun Liang. Palladium-catalyzed cascade synthesis of spirocyclic oxindoles via regioselective C2-H arylation and C8-H alkylation of naphthalene ring[J]. Chinese Chemical Letters, ;2021, 32(2): 713-716. doi: 10.1016/j.cclet.2020.07.005 shu

Palladium-catalyzed cascade synthesis of spirocyclic oxindoles via regioselective C2-H arylation and C8-H alkylation of naphthalene ring

Figures(5)

  • A simultaneous C2-H arylation and C8-H alkylation of naphthalene ring has been achieved by palladium-catalyzed cascade reaction of N-(2-halophenyl)-2-(naphthalen-1-yl)acrylamides with aryl iodides, which provides an efficient method for synthesizing various aryl-substituted spirocyclic oxindoles. The protocol enables three CC bonds formation via an intramolecular Heck reaction and sequentially regioselective CH bond activation.
  • 加载中
    1. [1]

      (a) X.S. Xue, P. Ji, B. Zhou, J.P. Cheng, Chem. Rev. 117 (2017) 8622-8648;
      (b) C. Liu, J. Yuan, M. Gao, et al., Chem. Rev. 115 (2015) 12138-12204;
      (c) D. Alberico, M.E. Scott, M. Lautens, Chem. Rev. 107 (2007) 174-238.

    2. [2]

      (a) J. He, M. Wasa, K.L. Chan, Q. Shao, J.Q. Yu, Chem. Rev. 117 (2017) 8754-8786;
      (b) T. Gensch, M.N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 45 (2016) 2900-2936;
      (c) H. Huang, X. Ji, W. Wu, H. Jiang, Chem. Soc. Rev. 44 (2015) 1155-1171;
      (d) Z. Huang, H.N. Lim, F. Mo, M.C. Young, G. Dong, Chem. Soc. Rev. 44 (2015) 7764-7786;
      (e) K.M. Engle, T.S. Mei, M. Wasa, J.Q. Yu, Acc. Chem. Res. 45 (2012) 788-802;
      (f) S.R. Neufeldt, M.S. Sanford, Acc. Chem. Res. 45 (2012) 936-946.

    3. [3]

      M. Catellani, F. Frignani, A. Rangoni, Angew. Chem. Int. Ed. 36 (1997) 119-122.

    4. [4]

      (a) J. Wang, G. Dong, Chem. Rev. 119 (2019) 7478-7528;
      (b) H.G. Cheng, S. Chen, R. Chen, Q. Zhou, Angew. Chem. Int. Ed. 58 (2019) 5832-5844;
      (c) Z.S. Liu, Q. Gao, H.G. Cheng, Q. Zhou, Chem. Eur. J. 24 (2018) 15461-15476;
      (d) D.S. Kim, W.J. Park, C.H. Jun, Chem. Rev. 117 (2017) 8977-9015;
      (e) N. Della Ca', M. Fontana, E. Motti, M. Catellani, Acc. Chem. Res. 49 (2016) 1389-1400;
      (f) J. Ye, M. Lautens, Nat. Chem. 7 (2015) 863-870.

    5. [5]

      (a) Y. Ping, Y. Li, J. Zhu, W. Kong, Angew. Chem. Int. Ed. 58 (2019) 1562-1573;
      (b) I. Franzoni, H. Yoon, J.A. García-López, A.I. Poblador-Bahamonde, M. Lautens, Chem. Sci. 9 (2018) 1496-1509;
      (c) V.P. Mehta, J.A. García-López, ChemCatChem 9 (2017) 1149-1156;
      (d) M. Pe'rez-Go'mez, L. Navarro, I. Saura-Llamas, et al., Organometallics 36 (2017) 4465-4476.

    6. [6]

      (a) D. Brown, K. Grigg, V. Sridharan, V. Tambyrajah, Tetrahedron Lett. 44 (1995) 8137-8140;
      (b) R. Grigg, P. Fretwell, C. Meerholtz, V. Sridharan, Tetrahedron 50 (1994) 359-370.

    7. [7]

      (a) N. Saha, H. Wang, S. Zhang, et al., Org. Lett. 20 (2018) 712-715;
      (b) Y.C. Wu, S.S. Jiang, R.J. Song, J.H. Li, Chem. Commun. (Camb. ) 55 (2019) 4371-4374;
      (c) T. Piou, L. Neuville, J. Zhu, Angew. Chem. Int. Ed. 51 (2012) 11561-11565;
      (d) T. Piou, L. Neuville, J. Zhu, Org. Lett. 14 (2012) 3760-3763;
      (e) R.T. Ruck, M.A. Huffman, M.M. Kim, et al., Angew. Chem. Int. Ed. 47 (2008) 4711-4714.

    8. [8]

      (a) Z.Y. Gu, C.G. Liu, S.Y. Wang, S.J. Ji, Org. Lett. 18 (2016) 2379-2382;
      (b) A. Bunescu, T. Piou, Q. Wang, J. Zhu, Org. Lett. 17 (2015) 334-337;
      (c) T. Piou, A. Bunescu, Q. Wang, L. Neuville, J. Zhu, Angew. Chem. Int. Ed. 52 (2013) 12385-12389;
      (d) Z. Lu, C. Hu, J. Guo, et al., Org. Lett. 12 (2010) 480-483;
      (e) Q. Huang, A. Fazio, G. Dai, M.A. Campo, R.C. Larock, J. Am. Chem. Soc. 126 (2004) 7460-7461.

    9. [9]

      (a) J.G. Liu, W.W. Chen, C.X. Gu, B. Xu, M.H. Xu, Org. Lett. 20 (2018) 2728-2732;
      (b) A. Lu, X. Ji, B. Zhou, Z. Wu, Y. Zhang, Angew. Chem. Int. Ed. 57 (2018) 3233-3237;
      (c) C. Shao, Z. Wu, X. Ji, B. Zhou, Y. Zhang, Chem. Commun. (Camb. ) 53 (2017) 10429-10432;
      (d) M. Pérez-Gómez, S. Hernández-Ponte, D. Bautistab, J.A. García-López, Chem. Commun. (Camb. ) 53 (2017) 2842-2845;
      (e) M. Péreⱬ-Gómez, J.A. García-Lópeⱬ, Angew. Chem. Int. Ed. 55 (2016) 14389-14393;
      (f) T. Yao, D. He, Org. Lett. 19 (2017) 842-845;
      (g) H. Zheng, Y. Zhu, Y. Shi, Angew. Chem. Int. Ed. 53 (2014) 11280-11284.

    10. [10]

      (a) J.F. Rodríguez, A.D. Marchese, M. Lautens, Org. Lett. 20 (2018) 4367-4370;
      (b) J. Ye, Z. Shi, T. Sperger, et al., Nat. Chem. 9 (2017) 361-368;
      (c) H. Yoon, M. Rölz, F. Landau, M. Lautens, Angew. Chem. Int. Ed. 56 (2017) 10920-10923;
      (d) H. Yoon, A. Lossouarn, F. Landau, M. Lautens, Org. Lett. 18 (2016) 6324-6327;
      (e) M. Sickert, H. Weinstabl, B. Peters, X. Hou, M. Lautens, Angew. Chem. Int. Ed. 53 (2014) 5147-5251.

    11. [11]

      (a) X. Yang, H. Lu, X. Zhu, et al., Org. Lett. 21 (2019) 7284-7288;
      (b) X. Luo, L. Zhou, H. Lu, et al., Org. Lett. 21 (2019) 9960-9964;
      (c) X. Luo, Y. Xu, G. Xiao, et al., Org. Lett. 20 (2018) 2997-3000.

    12. [12]

      (a) G. Tan, Q. You, J. Lan, J. You, Angew. Chem. Int. Ed. 57 (2018) 6309-6313;
      (b) G. Tan, Q. You, J. You, ACS Catal. 8 (2018) 8709-8714;
      (c) H. Miura, S. Terajima, T. Shishido, ACS Catal. 8 (2018) 6246-6254;
      (d) Y.C. Wu, S.S. Jiang, S.Z. Luo, R.J. Song, J.H. Li, Chem. Commun. (Camb. ) 55 (2019) 8995-8998;
      (e) S.L. Liu, X.H. Li, S.S. Zhang, et al., Adv. Synth. Catal. 359 (2017) 2241-2246;
      (f) Y. Zhang, H. Zhao, M. Zhang, W. Su, Angew. Chem. Int. Ed. 54 (2015) 3817-3821;
      (g) F.J. Chen, G. Liao, X. Li, J. Wu, B.F. Shi, Org. Lett. 16 (2014) 5644-5647;
      (h) J. Ryu, J. Kwak, K. Shin, D. Lee, S. Chang, J. Am. Chem. Soc. 135 (2013) 12861-12868.

    13. [13]

      (a) P. Wang, M.E. Farmer, X. Huo, et al., J. Am. Chem. Soc. 138 (2016) 9269-9676;
      (b) P. Wang, G.C. Li, P. Jain, et al., J. Am. Chem. Soc. 138 (2016) 14092-14099;
      (c) X.C. Wang, W. Gong, L.Z. Fang, et al., Nature 519 (2015) 334-338.

    14. [14]

      (a) T. Fukuyama, T. Sugimori, S. Maetani, I. Ryu, Org. Biomol. Chem. 16 (2018) 7583-7587;
      (b) D. Sun, B. Li, J. Lan, Q. Huang, J. You, Chem. Commun. (Camb. ) 52 (2016) 3635-3638;
      (c) Z.W. Yang, Q. Zhang, Y.Y. Jiang, et al., Chem. Commun. (Camb. ) 52 (2016) 6709-6711;
      (d) N. Luo, Z. Yu, Chem. Eur. J. 16 (2010) 787-791;
      (e) K.L. Hull, M.S. Sanford, J. Am. Chem. Soc. 129 (2007) 11904-11905.

    15. [15]

      M. Wang, M. Zhang, Y. Luo, et al., Org. Lett. 22 (2020) 135-139.

    16. [16]

      (a) W. Li, W. Chen, B. Zhou, et al., Org. Lett. 21 (2019) 2718-2722;
      (b) Y. Xu, X. Liu, W. Chen, et al., J. Org. Chem. 83 (2018) 13930-13939;
      (c) Y. Yang, B. Zhou, X. Zhu, et al., Org. Lett. 20 (2018) 5402-5405;
      (d) G. Xiao, L. Chen, B. Zhou, et al., Adv. Synth. Catal. 360 (2018) 3477-3481;
      (e) L. Wu, G. Deng, Y. Liang, Org. Biomol. Chem. 15 (2017) 6808-6812;
      (f) G. Xiao, L. Chen, G. Deng, J. Liu, Y. Liang, Tetrahedron Lett. 59 (2018) 1836-1840;
      (g) W. Li, G. Xiao, G. Deng, Y. Liang, Org. Chem. Front. 5 (2018) 1488-1492.

  • 加载中
    1. [1]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    2. [2]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    3. [3]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    4. [4]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    5. [5]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    6. [6]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    7. [7]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    8. [8]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    9. [9]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    10. [10]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    11. [11]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    12. [12]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    13. [13]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    14. [14]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    15. [15]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    16. [16]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    17. [17]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    18. [18]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    19. [19]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    20. [20]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

Metrics
  • PDF Downloads(5)
  • Abstract views(1157)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return