Citation: Jiahang Lv, Binlin Zhao, Ying Han, Yu Yuan, Zhuangzhi Shi. Metal-free cascade boron–heteroatom addition and alkylation with diazo compounds[J]. Chinese Chemical Letters, ;2021, 32(2): 691-694. doi: 10.1016/j.cclet.2020.06.028 shu

Metal-free cascade boron–heteroatom addition and alkylation with diazo compounds

    * Corresponding authors at: College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
    E-mail addresses: hanying@yzu.edu.cn (Y. Han), shiz@nju.edu.cn (Z. Shi).
    1 These authors contributed equally to this work.
  • Received Date: 22 May 2020
    Revised Date: 8 June 2020
    Accepted Date: 19 June 2020
    Available Online: 23 June 2020

Figures(5)

  • Transition metal-catalyzed carbene transfer reaction is one of the most notable advances for C−C bond formation reactionsduring the past decade, which has been widely employed in the preparation of C3-substituted indoles. Here, we described an efficient example of catalyst- and metal-free aminoboration of alkynes and C−C bond formation with diazo compounds to produce C3-substituted indoles. Diverse alkynylanilines and diazo compounds can be utilized for this tandem transformation under mild reaction conditions, resulting in broad functional group compatibility. Additionally, this metal-free strategy can be extended to construct substituted benzofurans.
  • 加载中
    1. [1]

      (a) D.G. Batt, J.X. Qiao, D.P. Modi, et al., Biorg. Med. Chem. Lett.14 (2004) 5269-5273;
      (b) T. Kawasaki, K. Higuchi, Nat. Prod. Rep. 22 (2005) 761-793;
      (c) A.J. Kochanowska-Karamyan, M.T. Hamann, Chem. Rev. 110 (2010) 4489-4497;
      (d) M. Ishikura, T. Abe, T. Choshi, S. Hibin, S. Hibino, Nat. Prod. Rep. 30 (2013) 694-752;
      (e) A.J. Kochanowaska-Karamyan, M.T. Hamann, Chem. Rev. 110 (2010) 4489-4497;
      (f) S.A. Patil, R. Patil, D.D. Miller, Future Med. Chem. 4 (2012) 2085-2099;
      (g) N.K. Kaushik, N. Kaushik, P. Attri, et al., Molecules 18 (2013) 6620-6662;
      (h) M.Z. Zhang, Q. Chen, G.F. Yang, Eur. J. Med. Chem. 89 (2015) 421-441.

    2. [2]

      (a) B.E. Maryano, H.C. Zhang, J.H. Cohen, I.J. Turchi, C.A. Maryano, Chem. Rev. 104 (2004) 1431-1628;
      (b) S. Cacchi, G. Fabrizi, Chem. Rev. 105 (2005) 2873-2920;
      (c) G.R. Humphrey, J.T. Kuethe, Chem. Rev. 106 (2006) 2875-2911;
      (d) B.J. Stokes, H. Dong, B.E. Leslie, A.L. Pumphrey, T.G. Driver, J. Am. Chem. Soc. 129 (2007) 7500-7501;
      (e) M. Ganesh, D. Seidel, J. Am. Chem. Soc. 130 (2008) 16464-16465;
      (f) M. Bandini, A. Eichholzer, Angew. Chem. Int. Ed. 48 (2009) 9608-9644;
      (g) C. Guo, J. Song, S. Luo, L. Gong, Angew. Chem. Int. Ed. 49 (2010) 5558-5564;
      (h) T.P. Pathak, K.M. Gligorich, B.E. Welm, M.S. Sigman, J. Am. Chem. Soc. 132 (2010) 7870-7871;
      (i) J.B. Chen, Y.X. Jia, Org. Biomol. Chem. 15 (2017) 3550-3567;
      (j) S. Patil, R. Patil, Curr. Org. Synth. 4 (2007) 201-222;
      (k) Y.Y. Liu, X.Y. Yu, J.R. Chen, et al., Angew. Chem. Int. Ed. 56 (2017) 9527-9531.

    3. [3]

      (a) C. Schultz, A. Link, M. Leost, et al., J. Med. Chem. 42 (1999) 2909-2919;
      (b) B.W. Trotter, A.G. Quigley, W.C. Lumma, et al., Bioorg. Med. Chem. Lett. 11 (2001) 865-869;
      (c) D.E. Williams, J. Davies, B.O. Patrick, et al., Org. Lett. 10 (2008) 3501-3504;
      (d) F.R. de S. Alves, E.J. Barreiro, C.A.M. Fraga, Mini-Rev. Med. Chem. 9 (2009) 782-793.

    4. [4]

      (a) R. Gibe, M.A. Kerr, J. Org. Chem. 67 (2002) 6247-6249;
      (b) Y.J. Lian, H.M.L. Davies, J. Am. Chem. Soc. 132 (2010) 440-441;
      (c) A. De Angelis, V.W. Shurtleff, O. Dmitrenko, J.M. Fox, J. Am. Chem. Soc. 133 (2011) 1650-1653;
      (d) Y. Lian, H.M.L. Davies, Org. Lett. 14 (2012) 1934-1937;
      (e) F. Ye, Z.X. Wang, J. Wang, et al., J. Am. Chem. Soc. 137 (2015) 4435-4444;
      (f) D.T. Boruta, O. Dmitrenko, J.M. Fox, et al., Chem. Sci. 3 (2012) 1589-1593;
      (g) H.M.L. Davies, S.J. Hedley, Chem. Soc. Rev. 36 (2007) 1109-1119;
      (h) D.R. Stuart, P. Alsabeh, M. Kuhnand, K. Fagnou, J. Am. Chem. Soc. 132 (2010) 18326-18339.

    5. [5]

      (a) Z. Yu, B. Ma, M. Chen, et al., J. Am. Chem. Soc. 136 (2014) 6904-6907;
      (b) Y. Xi, Y. Su, Z. Yu, et al., Angew. Chem. Int. Ed. 53 (2014) 9817-9821;
      (c) R.R. Singh, R.S. Liu, Chem. Commun. 53 (2017) 4593-4596.

    6. [6]

      (a) X. Gao, B. Wu, W.X. Huang, M.W. Chen, Y.G. Zhou, Angew. Chem. Int. Ed. 54 (2015) 11956-11960;
      (b) S. Cacchi, G. Fabrizi, Chem. Rev. 105 (2005) 2873-2920;
      (c) Z. Hu, S. Luo, Q. Zhu, Adv. Synth. Catal. 357 (2015) 1060-1064;
      (d) S. Wurtz, S. Rakshit, F. Glorius, et al., Angew. Chem. Int. Ed. 47 (2008) 7230-7233;
      (e) Z. Shi, C. Zhang, N. Jiao, et al., Angew. Chem. Int. Ed. 48 (2009) 4572-4576.

    7. [7]

      (a) M. Delgado-Rebollo, A. Prieto, P.J. Perez, ChemCatChem 6 (2014) 2047-2052;
      (b) X. Gao, B. Wu, Z. Yan, Y.G. Zhou, Org. Biomol. Chem. 14 (2016) 8237-8240;
      (c) M.B. Johansen, M.A. Kerr, Org. Lett. 12 (2010) 4956-4959;
      (d) A. Mark, A.A. Jaworski, K.A. Scheidt, et al., Angew. Chem. Int. Ed. 57 (2018) 17225-17229;
      (e) Y.Z. Cheng, Q.R. Zhao, X. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 18069-18074;
      (f) J.M. Fraile, K.L. Jeune, J.A. Mayoral, et al., Org. Biomol. Chem. 11 (2013) 4327-4332.

    8. [8]

      Y. Cai, S.F. Zhu, G.P. Wang, Q.L. Zhou, Adv. Synth. Catal. 353 (2011) 2939-2944.  doi: 10.1002/adsc.201100334

    9. [9]

      D.A. Vargas, A. Tinoco, V. Tyagi, R. Fasan, Angew. Chem. Int. Ed. 57 (2018) 9911-9915.  doi: 10.1002/anie.201804779

    10. [10]

      (a) S. Nakagawa, K.A. Bainbridge, K. Butcher, et al., ChemMedChem 7 (2012) 233-236;
      (b) L. Kupracz, A. Kirschning, J. Flow Chem. 3 (2013) 11-16;
      (c) D.M. Allwood, D.C. Blakemore, A.D. Brown, S.V. Ley, J. Org. Chem. 79 (2014) 328-338;
      (d) C.L. Sun, Z.J. Shi, Chem. Rev. 114 (2014) 9219-9280;
      (e) W. Liu, C.J. Li, Synlett 28 (2017) 2714-2754;
      (f) W. Liu, J. Li, P. Querard, C.J. Li, J. Am. Chem. Soc. 141 (2019) 6755-6764;
      (g) J. Chen, D. Chang, F. Xiao, G.J. Deng, J. Org. Chem. 84 (2019) 568-578.

    11. [11]

      J. Barluenga, M. Tomas-Gamasa, F. Aznar, C. Valde s, Nat. Chem. 1 (2009) 494-499.  doi: 10.1038/nchem.328

    12. [12]

      C. Battilocchio, F. Feist, A. Hafner, S.V. Ley, et al., Nat. Chem. 8 (2016) 360-367.  doi: 10.1038/nchem.2439

    13. [13]

      J. Lv, B. Zhao, L. Liu, et al., Adv. Synth. Catal. 360 (2018) 4054-4059.  doi: 10.1002/adsc.201800509

    14. [14]

      (a) J. Lv, X. Chen, K.N. Houk, Z. Shi, et al., Nature 575 (2019) 336-340;
      (b) J. Lv, B. Zhao, Y. Yuan, Y. Han, Z. Shi, Nat. Commun. 11 (2020) 1316.

    15. [15]

      A.J. Warner, A. Churn, J.S. McGough, M.J. Ingleson, Angew. Chem. Int. Ed. 56 (2017) 354-358.  doi: 10.1002/anie.201610014

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    4. [4]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    5. [5]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    6. [6]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    11. [11]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    12. [12]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    13. [13]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    14. [14]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    15. [15]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    16. [16]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    17. [17]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    18. [18]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    19. [19]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    20. [20]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

Metrics
  • PDF Downloads(6)
  • Abstract views(1141)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return