Citation: Yachao Zhang, Liang-Liang Mao, Sifan Hu, Yi Luan, Huan Cong. Photo-induced anti-Markovnikov hydroalkylation of unactivated alkenes employing a dual-component initiator[J]. Chinese Chemical Letters, ;2021, 32(2): 681-684. doi: 10.1016/j.cclet.2020.06.026 shu

Photo-induced anti-Markovnikov hydroalkylation of unactivated alkenes employing a dual-component initiator

    * Corresponding author at: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
    ** Corresponding author.
    E-mail addresses: yiluan@ustb.edu.cn (Y. Luan), hcong@mail.ipc.ac.cn (H. Cong).
  • Received Date: 4 May 2020
    Revised Date: 10 June 2020
    Accepted Date: 19 June 2020
    Available Online: 22 June 2020

Figures(5)

  • Metal-free anti-Markovnikov hydroalkylation of unactivated alkenes with cyanoacetate has been developed, featuring the use of a dual-component initiator containing an organic photocatalyst and a radical precursor. When combined, the two components can undergo visible light-induced single-electron transfer, and serve as a versatile and effective alkyl radical generator.
  • 加载中
    1. [1]

      (a) V.P. Ananikov, M. Tanaka, Hydrofunctionalization, Springer-Verlag, Berlin, 2013;
      (b) M.D. Greenhalgh, A.S. Jones, S.P. Thomas, ChemCatChem 7 (2015) 190-222;
      (c) S.W.M. Crossley, C. Obradors, R.M. Martinez, R.A. Shenvi, Chem. Rev. 116 (2016) 8912-9000;
      (d) J.H. Chen, Z. Lu, Org. Chem. Front. 5 (2018) 260-272;
      (e) J.V. Obligacion, P.J. Chirik, Nat. Chem. Rev. 2 (2018) 15-34;
      (f) N.J. Adamson, S.J. Malcolmson, ACS Catal. 10 (2020) 1060-1076.

    2. [2]

      (a) M. Beller, J. Seayad, A. Tillack, H.J. Jiao, Angew. Chem. Int. Ed. 43 (2004) 3368-3398;
      (b) E.M. Carreira, V.G. Nenajdenko, S.J. Miller, P.J. Chirik, K. Meyer, Organometallics 39 (2020) 375-377.

    3. [3]

      (a) M.S. Sanford, J.T. Groves, Angew. Chem. Int. Ed. 43 (2004) 588-590;
      (b) R.J. DeLuca, M.S. Sigman, J. Am. Chem. Soc. 133 (2011) 11454-11457;
      (c) X. Lin, F.L. Qing, Org. Lett. 15 (2013) 4478-4481;
      (d) R.J. DeLuca, M.S. Sigman, Org. Lett. 15 (2013) 92-95;
      (e) F. Mo, G. Dong, Science 345 (2014) 68-72;
      (f) D. Yamauchi, T. Nishimura, H. Yorimitsu, Angew. Chem. Int. Ed. 56 (2017) 7200-7204.

    4. [4]

      (a) B.B. Snider, Chem. Rev. 96 (1996) 339-364;
      (b) K.A. Margrey, D.A. Nicewicz, Acc. Chem. Res. 49 (2016) 1997-2006.

    5. [5]

      (a) K.L. Skubi, T.R. Blum, T.P. Yoon, Chem. Rev. 116 (2016) 10035-10074;
      (b) D. Staveness, I. Bosque, C.R.J. Stephenson, Acc. Chem. Res. 49 (2016) 2295-2306;
      (c) M.H. Shaw, J. Twilton, D.W.C. MacMillan, J. Org. Chem. 81 (2016) 6898-6926.

    6. [6]

      J. Twilton, C.C. Le, P. Zhang, et al., Nat. Chem. Rev. 1 (2017) 52.

    7. [7]

      (a) L. Ren, M.M. Yang, C.H. Tung, L.Z. Wu, H. Cong, ACS Catal. 7 (2017) 8134-8138;
      (b) L.L. Mao, H. Cong, ChemSusChem 10 (2017) 4461-4464;
      (c) L. Ren, H. Cong, Org. Lett. 20 (2018) 3225-3228.

    8. [8]

      (a) D.P. Hari, B. König, Chem. Commun. 50 (2014) 6688-6699;
      (b) M. Maiek, F. Filace, A.J. Wanggelin, Beilstein J. Org. Chem. 10 (2014) 981-989;
      (c) N.A. Romero, D.A. Nicewicz, Chem. Rev. 116 (2016) 10075-10166;
      (d) V. Srivastava, P.P. Singh 7 (2017) 31377-31392.

    9. [9]

      (a) K. Okada, K. Okamoto, M. Oda, J. Am. Chem. Soc. 110 (1988) 8736-8738;
      (b) K. Okada, K. Okamoto, N. Morita, K. Okubo, M. Oda, J. Am. Chem. Soc. 113 (1991) 9401-9402;
      (c) S. Murarka, Adv. Synth. Catal. 360 (2018) 1735-1753;
      (d) M. Zhou, P. Qin, L. Jing, J. Sun, H. Du, Chin. J. Org. Chem. 40 (2020) 598-613.

    10. [10]

      (a) S. Ryushi, N. Ikuzo, M. Yoshiharu, H. Tsuneaki, Chem. Lett. 19 (1990) 2285-2288;
      (b) T. Kagayama, T. Fuke, S. Sakaguchi, Y. Ishii, Bull. Chem. Soc. Jpn. 78 (2005) 1673-1676;
      (c) Z. Li, Y. Xiao, Z.Q. Liu, Chem. Commun. 51 (2015) 9969-9971.

    11. [11]

      (a) X.Z. Fan, J.W. Rong, H.L. Wu, et al., Angew. Chem. Int. Ed. 57 (2018) 8514-8518;
      (b) D.M. Yan, Q.Q. Zhao, L. Rao, J.R. Chen, W.J. Xiao, Chem. Eur. J. 24 (2018) 16895-16901;
      (c) D.M. Yan, J.R. Chen, W.J. Xiao, Angew. Chem. Int. Ed. 58 (2019) 378-380.

    12. [12]

      S. Caddick, D.B. Judd, A.K.K. Lewis, M.T. Reich, M.R.V. Williams, Tetrahedron 59 (2003) 5417-5423.  doi: 10.1016/S0040-4020(03)00858-5

    13. [13]

      (a) K. Gademann, T. Kimmerlin, D. Hoyer, D. Seebach, J. Med. Chem. 44 (2001) 2460-2468;
      (b) E. Juaristi, V.A. Soloshonok, Enantioselective Synthesis of β-Amino Acids, 2nd. ed., Wiley, Hoboken, 2005;
      (c) D. Seebach, J. Gardiner, Acc. Chem. Res. 41 (2008) 1366-1375.

    14. [14]

      D. Griller, K.U. Ingold, Acc. Chem. Res. 13 (1980) 317-323.  doi: 10.1021/ar50153a004

    15. [15]

      (a) M.J. Schnermann, L.E. Overman, Angew. Chem. Int. Ed. 51 (2012) 9576-9580;
      (b) G. Pratsch, G.L. Lackner, L.E. Overman, J. Org. Chem. 80 (2015) 6025-6036;
      (c) Y. Jin, H. Yang, H. Fu, Chem. Commun. 52 (2016) 12909-12912;
      (d) K.M.M. Huihui, J.A. Caputo, Z. Melchor, et al., J. Am. Chem. Soc. 138 (2016) 5016-5019;
      (e) T. Qin, J. Cornella, C. Li, et al., Science 352 (2016) 801-805;
      (f) J. Schwarz, B. König, Green Chem. 18 (2016) 4743-4749.

    16. [16]

      M.A. Cismesia, T.P. Yoon, Chem. Sci. 6 (2015) 5426-5434.  doi: 10.1039/C5SC02185E

  • 加载中
    1. [1]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    2. [2]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    3. [3]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    4. [4]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    5. [5]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    6. [6]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    7. [7]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    8. [8]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    9. [9]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    10. [10]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    11. [11]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    12. [12]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195

    13. [13]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    14. [14]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    15. [15]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    16. [16]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    17. [17]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    18. [18]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    19. [19]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    20. [20]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

Metrics
  • PDF Downloads(18)
  • Abstract views(1254)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return