Comparative study of CO2 hydrogenation to methanol on cubic bixbyite-type and rhombohedral corundum-type indium oxide
-
* Corresponding author.
E-mail address: lmguo@hust.edu.cn (L. Guo).
Citation: Yang Bin, Li Longtai, Jia Ziye, Liu Xiping, Zhang Chunjie, Guo Limin. Comparative study of CO2 hydrogenation to methanol on cubic bixbyite-type and rhombohedral corundum-type indium oxide[J]. Chinese Chemical Letters, ;2020, 31(10): 2627-2633. doi: 10.1016/j.cclet.2020.05.031
S. Li, Y. Wang, B. Yang, L. Guo, Appl. Catal. A: Gen. 571(2019) 51-60.
doi: 10.1016/j.apcata.2018.12.008
B. Yang, L. Wang, Z. Hua, L. Guo, Ind. Eng. Chem. Res. 58(2019) 9838-9843.
doi: 10.1021/acs.iecr.9b01316
B. Yang, W. Deng, L. Guo, T. Ishihara, Chin. J. Catal. 41(2020) 1348-1359.
doi: 10.1016/S1872-2067(20)63605-1
R.W. Dorner, D.R. Hardy, F.W. Williams, H.D. Willauer, Energy Environ. Sci. 3(2010) 884.
doi: 10.1039/c001514h
Z. Li, J. Wang, Y. Qu, et al., ACS Catal. 12(2017) 8544-8548.
J. Wei, Q. Ge, R. Yao, et al., Nat. Commun. 8(2017) 15174.
doi: 10.1038/ncomms15174
L. Qi, Y. Wei, L. Xu, Z. Liu, ACS Catal. 5(2015) 3973-3982.
doi: 10.1021/acscatal.5b00654
X. Zhu, J.P. Hofmann, B. Mezari, et al., ACS Catal. 6(2016) 2163-2177.
doi: 10.1021/acscatal.5b02480
K. Cheng, B. Gu, X. Liu, et al., Angew. Chem., Int. Ed. 55(2016) 4725-4728.
doi: 10.1002/anie.201601208
P. Gao, S. Dang, S. Li, et al., ACS Catal. 8(2017) 571-578.
O. Martin, A.J. Martin, C. Mondelli, et al., Angew. Chem., Int. Ed. 55(2016) 6261-6265.
doi: 10.1002/anie.201600943
M.S. Frei, C. Mondelli, R. García-Muelas, et al., Nat. Commun. 10(2019) 3377.
doi: 10.1038/s41467-019-11349-9
J.M. Yang, Z.P. Qi, Y.S. Kang, L. Qing, W. Sun, Chin. Chem. Lett. 27(2016) 492-496.
doi: 10.1016/j.cclet.2015.12.031
P. Gao, S. Li, X. Bu, et al., Nat. Chem. 9(2017) 1019-1024.
doi: 10.1038/nchem.2794
A. Tsoukalou, P. Abdala, D. Stoian, et al., J. Am. Chem. Soc. 141(2019) 13497-13505.
doi: 10.1021/jacs.9b04873
M.F. Bekheet, M.R. Schwarz, S. Lauterbach, et al., Angew. Chem., Int. Ed. 52(2013) 6531-6535.
doi: 10.1002/anie.201300644
A. Gurlo, Angew. Chem. Int. Ed. 49(2010) 5610-5612.
doi: 10.1002/anie.201000488
T. Bielz, H. Lorenz, P. Amann, B. Klötzer, S. Penner, J. Phys. Chem. C 115(2011) 6622-6628.
J. Wang, H. Wang, P. Hu, Sci. China Chem. 61(2017) 336-343.
S. Shu, D. Yu, Y. Wang, et al., J. Cryst. Growth 312(2010) 3111-3116.
doi: 10.1016/j.jcrysgro.2010.07.060
E.M. Kock, M. Kogler, C. Zhuo, et al., Phys. Chem. Chem. Phys.19(2017) 19407-19419.
doi: 10.1039/C7CP03632A
J. Ye, C. Liu, D. Mei, Q. Ge, ACS Catal. 3(2013) 1296-1306.
doi: 10.1021/cs400132a
J. Ye, C. Liu, Q. Ge, J. Phys. Chem. C 116(2012) 7817-7825.
doi: 10.1021/jp3004773
N. Rui, Z. Wang, K. Sun, et al., Appl. Catal. B 218(2017) 488-497.
doi: 10.1016/j.apcatb.2017.06.069
M. Neumann, D. Teschner, A. Knop-Gericke, W. Reschetilowski, M. Armbrüster, J. Catal. 340(2016) 49-59.
doi: 10.1016/j.jcat.2016.05.006
J. Ye, Q. Ge, C. Liu, Chem. Eng. Sci. 135(2015) 193-201.
doi: 10.1016/j.ces.2015.04.034
A. Gurlo, S. Lauterbach, G. Miehe, H. Kleebe, R. Riedel, J. Phys. Chem. C 112(2008) 9209-9213.
K. Reyes-Gil, E. Reyes-García, D. Raftery, J. Phys. Chem. C 111(2007) 14579-14588.
doi: 10.1021/jp072831y
M. Epifani, P. Siciliano, A. Gurlo, N. Barsan, U. Weimar, J. Am. Chem. Soc. 126(2004) 4078-4079.
doi: 10.1021/ja0318075
A. Gurlo, G. Miehe, R. Riedel, Chem. Commun. (Camb.) 19(2009) 2747-2749.
A. Gurlo, P. Kroll, R. Riedel, Chem. Eur. J. 14(2008) 3306-3310.
doi: 10.1002/chem.200701830
J.A. Sans, R. Vilaplana, D. Errandonea, et al., Nanotechnology 28(2017)205701.
doi: 10.1088/1361-6528/aa6a3f
D. Yu, S. Yu, S. Zhang, et al., Adv. Funct. Mater. 13(2003) 497-501.
doi: 10.1002/adfm.200304303
M.S. Frei, M. Capdevila-Cortada, R. García-Muelas, et al., J. Catal. 361(2018) 313-321.
doi: 10.1016/j.jcat.2018.03.014
W. Yin, D. Esposito, S. Yang, et al., J. Phys. Chem. C 114(2010) 13234-13240.
F. Liao, Y. Huang, J. Ge, et al., Angew. Chem., Int. Ed. 50(2011) 2162-2165.
doi: 10.1002/anie.201007108
J.C. Matsubu, S. Zhang, L. DeRita, et al., Nat. Chem. 9(2017) 120-127.
doi: 10.1038/nchem.2607
T. Bielz, H. Lorenz, W. Jochum, et al., J. Phys. Chem. C 114(2010) 9022-9029.
E.M. Köck, M. Kogler, M. Grünbacher, et al., J. Phys. Chem. C 120(2016) 15272-15281.
doi: 10.1021/acs.jpcc.6b04982
G. Popova, T. Andrushkevich, Y. Chesalov, E. Stoyanov, React. Kinet. Catal. Lett. 41(2000) 805-811.
S. Kattel, B. Yan, Y. Yang, J.G. Chen, P. Liu, J. Am. Chem. Soc. 138(2016) 12440-12450.
doi: 10.1021/jacs.6b05791
S.V. Ryazantsev, V.I. Feldman, L. Khriachtchev, J. Am. Chem. Soc. 139(2017) 9551-9557.
doi: 10.1021/jacs.7b02605
K. Larmier, W.C. Liao, S. Tada, et al., Angew. Chem., Int. Ed. 56(2017) 2318-2323.
doi: 10.1002/anie.201610166
S.T. Teklemichael, M.D. McCluskey, J. Phys. Chem. C 116(2012) 17248-17251.
doi: 10.1021/jp303835a
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957