Citation: Weipeng Chen, Guojun Zhou, Zhuolun Gou, Sen Wang, Yuanqi Zhai, Tian Han, Jürgen Schnack, Yanzhen Zheng. Hendecanuclear [Cu6Gd5] magnetic cooler with high molecular symmetry of D3h[J]. Chinese Chemical Letters, ;2021, 32(2): 838-841. doi: 10.1016/j.cclet.2020.05.018 shu

Hendecanuclear [Cu6Gd5] magnetic cooler with high molecular symmetry of D3h

    * Corresponding authors.
    E-mail addresses: jschnack@uni-bielefeld.de (J. Schnack), zheng.yanzhen@xjtu.edu.cn (Y. Zheng).
    1 These authors contributed equally to this work.
  • Received Date: 5 March 2020
    Revised Date: 15 April 2020
    Accepted Date: 13 May 2020
    Available Online: 17 May 2020

Figures(4)

  • A new family of isostructural 3d-4f polymetallic complexes, formulated as [Cu6Ln5(μ3−OH)9 (C4H8O2N)6(C5H4ON)6(H2O)9]·(ClO4)6·(H2O)22 (Ln = Pr, 1; Nd, 2; Sm, 3; Eu, 4; Gd, 5), was successfully isolated through the simple hydrolysis reaction of 2-aminoisobutyric acid, 2-hydroxypyridine, Cu(CH3COO)2·H2O, and Ln(ClO4)3·6H2O. Notably, the [Cu6Ln5] clusters with high molecular symmetry of D3h are rare examples of 2-aminoisobutyric acid-based 3d-4f clusters. The successful theoretical modeling of 5 yielded that the Gd-Gd exchange is of order 0.2 K, whereas the Gd-Cu exchange is an order of magnitude larger. Magnetization data collected for complex 5 yield a magnetic entropy change (−ΔSm) of 19.6 J kg−1 K−1 at 3 K and 7 T, which may be attributed to the weak magnetic interactions between the component metal ions.
  • 加载中
    1. [1]

      (a) X.P. Yang, D. Schipper, R.A. Jones, et al., J. Am. Chem. Soc. 135 (2013) 8468-8471;
      (b) X.P. Yang, D. Schipper, L.J. Zhang, et al., Nanoscale 6 (2014) 10569-10573.

    2. [2]

      (a) Y.Z. Zheng, G.J. Zhou, Z. Zheng, R.E.P. Winpenny, Chem. Soc. Rev. 43 (2014) 1462-1475;
      (b) J.L. Liu, Y.C. Chen, F.S. Guo, M.L. Tong, Coord. Chem. Rev. 281 (2014) 26-49;
      (c) X.Y. Zheng, X.J. Kong, Z. Zheng, L.S. Long, L.S. Zheng, Acc. Chem. Res. 51 (2018) 517-525;
      (d) X.H. Miao, S.D. Han, S.J. Liu, X.H. Bu, Chin. Chem. Lett. 25 (2014) 829-834.

    3. [3]

      (a) W.P. Chen, P.Q. Liao, P.B. Jin, et al., J. Am. Chem. Soc. 142 (2020) 4663-4670;
      (b) F. Evangelisti, R. Moré, F. Hodel, S. Luber, G.R. Patzke, J. Am. Chem. Soc. 137 (2015) 11076-11084;
      (c) K. Griffiths, P. Kumar, G.R. Akien, etal., Chem. Commun. 52 (2016) 7866-7869;
      (d) A. Baniodeh, N. Magnani, Y. Lan, et al., Npj Quantum Mater. 3 (2018) 10.

    4. [4]

      W.P. Chen, J. Singleton, L. Qin, et al., Nat. Comm. 9 (2018) 2107.  doi: 10.1038/s41467-018-04547-4

    5. [5]

      J.B. Peng, Q.C. Zhang, X.J. Kong, et al., Angew. Chem. Int. Ed. 50 (2011) 10649-10652.

    6. [6]

      J.B. Peng, Q.C. Zhang, X.J. Kong, et al., J. Am. Chem. Soc. 134 (2012) 3314-3317.  doi: 10.1021/ja209752z

    7. [7]

      W.P. Chen, P.Q. Liao, Y. Yu, et al., Angew. Chem. Int. Ed. 55 (2016) 9375-9379.  doi: 10.1002/anie.201603907

    8. [8]

      (a) E. Warburg, Ann. Phys. Chem. 13 (1881) 141-164;
      (b) A. Smith, Eur. Phys. J. H 38 (2013) 507-517.

    9. [9]

      (a) B.F. Yu, Q. Gao, B. Zhang, X.M. Meng, X.Z. Chen, Int. J. Refrig. 26 (2003) 622-636;
      (b) V. Pecharsky, K.A.J. Gschneidner, Int. J. Refrig. 29 (2006) 1239-1249;
      (c) K.A.J. Gschneidner, V. Pecharsky, Int. J. Refrig. 31 (2008) 945-961.

    10. [10]

      (a) D. Dermitzaki, G. Lorusso, C.P. Raptopoulou, et al., Inorg. Chem. 52 (2013) 10235-10237;
      (b) J.J. Zhang, S.M. Hu, S.C. Xiang, et al., Inorg. Chem. 45 (2006) 7173-7181;
      (c) J. Wu, L. Zhao, L. Zhang, et al., Angew. Chem. Int. Ed. 55 (2016) 15574-15578;
      (d) V. Baskar, K. Gopal, M. Helliwell, et al., Dalton Trans. 39 (2010) 4747-4750;
      (e) M. Andruh, I. Ramade, E. Codjovi, et al., J. Am. Chem. Soc. 115 (1993) 1822-1829.

    11. [11]

      (a) S.K. Langley, N.F. Chilton, B. Moubaraki, et al., Chem. Sci. 2 (2011) 1166-1169;
      (b) A.S. Dinca, A. Ghirri, A.M. Madalan, M. Affronte, M. Andruh, Inorg. Chem. 51 (2012) 3935-3937;
      (c) T.N. Hooper, J. Schnack, S. Piligkos, M. Evangelisti, E.K. Brechin, Angew. Chem. Int. Ed. 51 (2012) 4633-4636;
      (d) D.I. Alexandropoulos, K.M. Poole, L. Cunha-Silva, et al., Chem. Commun. 53 (2017) 4266-4269;
      (e) G. Xiong, H. Xu, J.Z. Cui, Q.L. Wang, B. Zhao, Dalton Trans. 43 (2014) 5639-5642;
      (f) J.D. Leng, J.L. Liu, M.L. Tong, Chem. Commun. 48 (2012) 5286-5288.

    12. [12]

      X.Y. Zheng, X.J. Kong, L.S. Long, Lanthanide hydroxide cluster complexes via ligand-controlled hydrolysis of the lanthanide ions, in: Z. Zheng (Ed. ), Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, Springer, Berlin, 2017, pp. 51-96.

    13. [13]

      (a) M. Orfanoudaki, I. Tamiolakis, M. Siczek, et al., Dalton Trans. 40 (2011) 4793-4796;
      (b) G.J. Sopasis, A.B. Canaj, A. Philippidis, et al., Inorg. Chem. 51 (2012) 5911-5918;
      (c) G.J. Sopasis, M. Orfanoudaki, P. Zarmpas, et al., Inorg. Chem. 51 (2012) 1170-1179.

    14. [14]

      S.C. Xiang, S.M. Hu, T.L. Sheng, et al., J. Am. Chem. Soc. 129 (2007) 15144-15146.  doi: 10.1021/ja0760832

    15. [15]

      (a) M.B. Nasr, K. Kaabi, M. Zeller, et al., Chin. Chem. Lett. 27 (2016) 896-900;
      (b) D. Tian, X.J. Liu, R.Y. Chen, Y.H. Zhang, Chin. Chem. Lett. 26 (2015) 499-503.

    16. [16]

      (a) S.G. Tabrizi, A.V. Arbuznikov, M. Kaupp, J. Phys. Chem. A 120 (2016) 6864-6879;
      (b) V.V. Mazurenko, Y.O. Kvashnin, F. Jin, et al., Phys. Rev. B 89 (2014) 214422;
      (c) J. Zhang, L. He, H. Cao, F. Wang, P. Zhang, J. Chem. Phys. 128 (2008) 154711.

    17. [17]

      (a) J. Schnack, O. Wendland, Eur. Phys. J. B 78 (2010) 535-541;
      (b) J. Schnack, C. Heesing, Eur. Phys. J. B 86 (2013) 46.

    18. [18]

      (a) Y. Wang, W.S. Wu, M.L. Huang, Chin. Chem. Lett. 27 (2016) 423-427;
      (b) C.W. Yan, Y.T. Li, D.Z. Liao, Chin. Chem. Lett. 7 (1996) 681-684.

  • 加载中
    1. [1]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    2. [2]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    3. [3]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    4. [4]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    5. [5]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    8. [8]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    9. [9]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    10. [10]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    11. [11]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2024.100200

    12. [12]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    13. [13]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    14. [14]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    15. [15]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    16. [16]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    17. [17]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    18. [18]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    19. [19]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    20. [20]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

Metrics
  • PDF Downloads(3)
  • Abstract views(1312)
  • HTML views(333)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return