Recent advance in synthesis and application of heteroatom zeolites
-
* Corresponding author.
E-mail address: xwcheng@fudan.edu.cn (X. Cheng).
1 These authors contributed equally to this paper.
Citation:
Tingting Pang, Xuanyu Yang, Chenyi Yuan, Ahmed A. Elzatahry, Abdulaziz Alghamdi, Xing He, Xiaowei Cheng, Yonghui Deng. Recent advance in synthesis and application of heteroatom zeolites[J]. Chinese Chemical Letters,
;2021, 32(1): 328-338.
doi:
10.1016/j.cclet.2020.04.018
J. Cejka, A. Corma, S. Zones, Zeolites and Catalysis: Synthesis, Reactions and Applications, Wiley, Weinheim, 2010.
J. Cejka, G. Centi, J. Perez-Pariente, et al., Catal. Today 179 (2012) 2-15.
doi: 10.1016/j.cattod.2011.10.006
R.R. Xu, W.Q. Pang, J.H. Yu, et al., Chemistry of Molecular Sieves and Porous Materials, Science Press, Beijing, 2004.
J.H. Yu, W.F. Yan, Chemistry of Nanoporous Materials: Synthesis and Preparation Ⅱ, Science Press, Beijing, 2013.
N. Liu, Study on Catalytic Decomposition of N2O by Zeolite Molecular Sieves, Beijing University of Chemical Technology, Beijing, 2013.
A.A. Ismail, R.M. Mohamed, O.A. Fouad, et al., Cryst. Res. Technol. 41 (2006) 145-149.
doi: 10.1002/crat.200510546
E. Zhao, S.E. Hardcastle, G. Pacheco, Microporous Mesoporous Mater. 31 (1999) 9-21.
doi: 10.1016/S1387-1811(99)00053-0
G.Q. Wu, Y.Q. Wang, L.N. Wang, et al., Chem. Eng. J. 215-216(2013) 306-314.
J.W. Zhong, J.F. Han, Y.X. Wei, et al., Catal. Sci. Technol. 7 (2017) 4905-4923.
doi: 10.1039/C7CY01466J
H.G. Jang, H.K. Min, J.K. Lee, et al., Appl. Catal. A-Gen. 437-438(2012) 120-130.
R.M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
P.A. Jacobs, K.U. Leuven, Catal. Rev. Sci. Eng. 24 (1982) 415-440.
doi: 10.1080/03602458208079659
L. Xu, Study on Synthesis, Functionalization and Catalytic Performance of Novel Heteroatom Molecular Sieves, East China Normal University, Shanghai, 2015.
N. Kosinov, C. Liu, E.J. M. Hensen, et al., Chem. Mater. 30 (2018) 3177-3198.
doi: 10.1021/acs.chemmater.8b01311
C. Baerlocher, L.B. Mc Cusker, D.H. Olson, Atlas of Zeolite Framework Types, 6th ed., Elsevier, Netherlands, 2007.
H. Kosslick, V.A. Tuan, R. Fricke, Cryst. Res. Technol. 26 (1991) 64-67.
doi: 10.1002/crat.2170260327
Y.J. Jin, S. Asaoka, S.D. Zhang, et al., Fuel Process. Tech. 115 (2013) 34-41.
doi: 10.1016/j.fuproc.2013.03.047
S. Hodoshima, A. Motomiya, S. Wakamatsu, et al., Res. Chem. Intermed. 41 (2015) 9615-9626.
doi: 10.1007/s11164-015-2023-4
M. Taramasso, S.D. Milanese, G. Perego, et al., US Patent 4410501, 1983.
M. Taramasso, G. Manara, V. Fattore, et al., US Patent 4666692, 1987.
M. Moliner, Dalton Trans. 43 (2014) 4197-4208.
doi: 10.1039/C3DT52293H
G. Bellussi, R. Millini, Struct. Bond 178 (2018) 1-52.
G. Perego, G. Bellussi, C. Corno, et al., Stud. Surf. Sci. Catal. 28 (1986) 129-135.
J.S. Reddy, R. Kumar, P. Ratnasamy, Appl. Catal. 58 (1990) L1-L4.
doi: 10.1016/S0166-9834(00)82273-3
M.A. Camblor, A. Corma, J.P. Pariente, Zeolites 13 (1993) 82-87.
doi: 10.1016/0144-2449(93)90064-A
M.A. Camblor, A. Corma, A. Martnez, et al., Chem. Commun. 8 (1992) 589-590.
M.A. Camblor, M. Costantini, A. Corma, et al., Chem. Commun. 11 (1996) 1339-1340.
T. Blasco, M.A. Camblor, A. Corma, et al., Chem. Commun. 20 (1996) 2367-2368.
N. Jappar, Q.H. Xia, T. Tatsumi, J. Catal. 180 (1998) 132-141.
doi: 10.1006/jcat.1998.2266
T. Tatsumi, N. Japper, J. Phys. Chem. B 102 (1998) 7126-7131.
doi: 10.1021/jp9816216
P. Wu, T. Komatsu, T. Yashima, J. Phys. Chem. 100 (1996) 10316-10322.
doi: 10.1021/jp960307d
P. Wu, T. Komatsu, T. Yashima, J. Catal. 168 (1997) 400-411.
doi: 10.1006/jcat.1997.1679
P. Wu, T. Komatsu, T. Yashima, Stud. Surf. Sci. Catal. 105 (1997) 663-670.
P. Wu, T. Komatsu, T. Yashima, J. Phys, Chem. B 102 (1998) 9297-9303.
doi: 10.1021/jp982951t
T. Blasco, M.A. Camblor, A. Corma, et al., J. Phys. Chem. B 102 (1998) 75-88.
doi: 10.1021/jp973288w
J. Grand, S.N. Talapaneni, A. Vicente, et al., Nat. Mater. 16 (2017) 1010-1015.
doi: 10.1038/nmat4941
G.J. Lv, S.L. Deng, Z. Yi, et al., Chem. Commun. 55 (2019) 4885-4888.
doi: 10.1039/C9CC00715F
F. Dubray, S. Moldovan, C. Kouvatas, et al., J. Am. Chem. Soc. 141 (2019) 8689-8693.
doi: 10.1021/jacs.9b02589
Q. Guo, F.T. Fan, E.A. Pidko, et al., ChemSusChem 6 (2013) 1352-1356.
doi: 10.1002/cssc.201300160
C.C. Chang, Z.P. Wang, P. Dornath, et al., RSC Adv. 2 (2012) 10475-10477.
doi: 10.1039/c2ra21381h
P. Li, G.Q. Liu, H.H. Wu, et al., J. Phys. Chem. C 115 (2011) 3663-3670.
doi: 10.1021/jp1076966
J. Dijkmans, D. Gabriëls, M. Dusselier, et al., Green Chem. 15 (2013) 2777-2785.
doi: 10.1039/c3gc41239c
C.D. Chang, C.T. W. Chu, J.N. Miale, et al., J. Am. Chem. Soc. 106 (1984) 8143-8146.
doi: 10.1021/ja00338a023
B. Kraushaar, J.H. C. Van Hooff, Catal. Lett. 1 (1988) 81-84.
doi: 10.1007/BF00772769
K. Yamagishi, S. Namba, T. Yashima, J. Catal. 121 (1990) 47-55.
doi: 10.1016/0021-9517(90)90215-6
K. Yamagishi, S. Namba, T. Yashima, J. Phys. Chem. 95 (1991) 872-877.
M.S. Rigutto, R.D. Ruiter, J.P. M. Niederer, et al., Stud. Surf. Sci. Catal. 84 (1994) 2245-2252.
B. Tang, W.L. Dai, X.M. Sun, et al., Green Chem. 16 (2014) 2281-2291.
doi: 10.1039/C3GC42534G
J.W. Yoo, C.W. Lee, J.S. Chang, et al., Catal. Lett. 66 (2000) 169-173.
doi: 10.1023/A:1019059925685
J. Gao, M. Liu, X.S. Wang, et al., Ind. Eng. Chem. Res. 49 (2010) 2194-2199.
doi: 10.1021/ie901360y
P. Wolf, C. Hammond, S. Conrad, et al., Dalton Trans. 43 (2014) 4514-4519.
doi: 10.1039/c3dt52972j
R. Xu, W. Pang, Chemistry-Zeolites and Porous Materials, Science Press, Beijing, 2004.
X. Li, B.S. Li, H.H. Mao, et al., J. Colloid Interface Sci. 332 (2009) 444-450.
doi: 10.1016/j.jcis.2009.01.006
X. Li, B.S. Li, J.Q. Xu, Colloids Surf. A Physicochem. Eng. Asp. 434 (2013) 287-295.
doi: 10.1016/j.colsurfa.2013.05.031
B.S. Li, X. Li, J.Q. Xu, et al., J. Colloid Interface Sci. 346 (2010) 199-207.
doi: 10.1016/j.jcis.2010.02.021
J. Wang, J.Q. Xu, B.S. Li, et al., Mater. Lett. 124 (2014) 54-56.
doi: 10.1016/j.matlet.2014.03.085
X. Li, B.S. Li, J.Q. Xu, et al., Appl. Clay Sci. 50 (2010) 81-86.
doi: 10.1016/j.clay.2010.07.006
X.W. Cheng, J. Wang, J. Guo, et al., ChemPhysChem 7 (2006) 1198-1202.
doi: 10.1002/cphc.200600002
X.W. Cheng, J.J. Mao, X.C. Lv, et al., J. Mater. Chem. A 2 (2014) 1247-1251.
doi: 10.1039/C3TA14235C
W. Luo, X.Y. Yang, Z.R. Wang, et al., Microporous Mesoporous Mater. 243 (2017) 112-118.
doi: 10.1016/j.micromeso.2017.01.040
Z.H. Kang, X.F. Zhang, H.O. Liu, et al., Chem. Eng. J. 218 (2013) 425-432.
doi: 10.1016/j.cej.2012.12.019
Z.Y. Han, F. Zhang, X.H. Zhao, Microporous Mesoporous Mater. 290 (2019) 109679-109687.
doi: 10.1016/j.micromeso.2019.109679
K. Miyake, Y. Hirota, K. Ono, et al., New J. Chem. 41 (2017) 2235-2240.
doi: 10.1039/C6NJ03538H
Z.G. Zhu, H. Xu, J.G. Jiang, et al., J. Catal. 352 (2017) 1-12.
doi: 10.1016/j.jcat.2017.04.031
G. Bellussi, G. Pazzuconi, C. Perego, et al., J. Catal. 157 (1995) 227-234.
doi: 10.1006/jcat.1995.1283
P. Ratnasamy, D. Srinivas, H. Knözinger, J. Adv. Catal. Sci. Technol. 48 (2004) 1-169.
E.H. Yuan, W.L. Dai, G.J. Wu, et al., Microporous Mesoporous Mater. 270 (2018) 265-273.
doi: 10.1016/j.micromeso.2018.05.032
S.T. Du, F. Li, Q.M. Sun, et al., Chem. Commun. 52 (2016) 3368-3371.
doi: 10.1039/C5CC08441E
T.J. Zhang, X.X. Chen, G.R. Chen, et al., J. Mater. Chem. A 6 (2018) 9473-9479.
doi: 10.1039/C8TA01439F
B.R. Wang, X.X. Peng, J.M. Yang, et al., Microporous Mesoporous Mater. 278 (2019) 30-34.
doi: 10.1016/j.micromeso.2018.11.019
X.M. Wang, J. Xu, G.D. Qi, et al., J. Phys. Chem. C 117 (2013) 4018-4023.
doi: 10.1021/jp310872a
U.V. Mentzel, K.T. HØjholt, M.S. Holm, et al., Appl. Catal. A-Gen. 417-418(2012) 290-297.
H.Y. Luo, L. Bui, W.R. Gunther, et al., ACS Catal. 2 (2012) 2695-2699.
doi: 10.1021/cs300543z
J. Despres, M. Koebel, O. Kröcher, et al., Microporous Mesoporous Mater. 58 (2003) 175-183.
doi: 10.1016/S1387-1811(02)00627-3
M. Sakizci, B.E. Alver, E. Yörükoğullari, Adsorp. Soc. 17 (2011) 739-745.
doi: 10.1007/s10450-011-9352-4
H.Y. Zhang, L.L. Chu, Q. Xiao, et al., J. Mater. Chem. A 1 (2013) 3254-3257.
doi: 10.1039/c3ta01238g
V. Martin-Gil, A. López, P. Hrabanek, et al., J. Membr. Sci. 523 (2017) 24-35.
doi: 10.1016/j.memsci.2016.09.041
J. Grand, S.N. Talapaneni, H.A. Aleksandrov, et al., ACS Appl. Mater. Interface 11 (2019) 12914-12919.
doi: 10.1021/acsami.8b17626
S.N. Talapaneni, J. Grand, S. Thomas, et al., Mater. Design 16 (2016) 30317-30340.
Y. Peng, H.G. Peng, W.M. Liu, et al., RSC Adv. 5 (2015) 42789-42797.
doi: 10.1039/C5RA05306D
P. Gallezot, Chem. Soc. Rev. 41 (2012) 1538-1558.
doi: 10.1039/C1CS15147A
J. Zakzeski, P.C. A. Bruijnincx, A.L. Jongerius, et al., Chem. Rev. 110 (2010) 3552-3599.
doi: 10.1021/cr900354u
R.L. Huang, W. Qi, R.X. Su, et al., Chem. Commun. 46 (2010) 1115-1117.
doi: 10.1039/B921306F
G. Epane, J.C. Laguerre, A. Wadouachi, et al., Green Chem. 12 (2010) 502-506.
doi: 10.1039/b922286c
C. Gao, C.Q. Ma, P. Xu, Biotechnol. Adv. 29 (2011) 930-939.
doi: 10.1016/j.biotechadv.2011.07.022
R.M. West, M.S. Holm, S. Saravanamurugan, et al., J. Catal. 269 (2010) 122-130.
doi: 10.1016/j.jcat.2009.10.023
C.B. Rasrendra, B.A. Fachri, I.G. B.N. Makertihartha, et al., ChemSusChem 4 (2011) 768-777.
doi: 10.1002/cssc.201000457
L. Li, C. Stroobants, K. Lin, et al., Green Chem. 13 (2011) 1175-1181.
doi: 10.1039/c0gc00923g
P.P. Pescarmona, K.P. F. Janssen, C. Delaet, et al., Green Chem. 12 (2010) 1083-1089.
doi: 10.1039/b921284a
E. Taarning, S. Saravanamurugan, M.S. Holm, et al., ChemSusChem 2 (2009) 625-627.
doi: 10.1002/cssc.200900099
M.S. Holm, S. Saravanamurugan, E. Taarning, Science 328 (2010) 602-605.
doi: 10.1126/science.1183990
M. Moliner, Y.R. Leshkov, M.E. Davis, PNAS 107 (2010) 6164-6168.
doi: 10.1073/pnas.1002358107
A.K. Patra, A. Dutta, M. Pramanik, et al., ChemCatChem 6 (2014) 220-229.
doi: 10.1002/cctc.201300850
M.S. Holm, Y.J. P. Torres, S. Saravanamurugan, et al., Green Chem. 14 (2012) 702-706.
doi: 10.1039/c2gc16202d
L.M. Ren, Q. Guo, P. Kumar, et al., Angew. Chem. Int. Ed. 54 (2015) 10848-10851.
doi: 10.1002/anie.201505334
Q. Guo, F.T. Fan, E.A. Pidko, et al., ChemSusChem 6 (2013) 1352-1356.
doi: 10.1002/cssc.201300160
Y. Rodenas, R. Mariscal, J.L. G. Fierro, et al., Green Chem. 20 (2018) 2845-2856.
doi: 10.1039/C8GC00857D
S. Alamolhoda, Novel Combination of Cerium and Nickel in Ce-Ni-MFI Catalysts in Low-Temperature Water Gas Shift Reaction, University of Calgary, Alberta, 2019.
U. Maity, J.K. Basu, S. Sengupta, Fuel 113 (2013) 180-186.
doi: 10.1016/j.fuel.2013.05.079
A. Julbe, D. Farrusseng, J.C. Jalibert, et al., Catal. Today 56 (2000) 199-209.
doi: 10.1016/S0920-5861(99)00277-1
Y. Dai, Y. Li, B.Q. Zhang, Cryst. Growth Des. 19 (2019) 4521-4525.
doi: 10.1021/acs.cgd.9b00281
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Lihang Wang , Mary Li Javier , Chunshan Luo , Tingsheng Lu , Shudan Yao , Bing Qiu , Yun Wang , Yunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Zhe-Han Yang , Jie Yin , Lei Xin , Yuanfang Li , Yijie Huang , Ruo Yuan , Ying Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Xiaomeng Hu , Jie Yu , Lijie Sun , Linfeng Zhang , Wei Zhou , Dongpeng Yan , Xinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466
Zhen Dai , Linzhi Tan , Yeyu Su , Kerui Zhao , Yushun Tian , Yu Liu , Tao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
Dongdong YANG , Jianhua XUE , Yuanyu YANG , Meixia WU , Yujia BAI , Zongxuan WANG , Qi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Zhaoru Chen , Xiaoxu Liu , Haonan Chen , Jialong Li , Xiaofeng Wang , Jianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810