Citation: Jie Zhou, Manna Huang, Xinhai Zhu, Yiqian Wan. One-pot synthesis of dual-state emission (DSE) luminogens containing the V-shape furo[2, 3-b]furan scaffold[J]. Chinese Chemical Letters, ;2021, 32(1): 445-448. doi: 10.1016/j.cclet.2020.02.038 shu

One-pot synthesis of dual-state emission (DSE) luminogens containing the V-shape furo[2, 3-b]furan scaffold

    * Corresponding authors.
    E-mail addresses: huangmn25@mail.sysu.edu.cn (M. Huang), ceswyq@mail.sysu.edu.cn (Y. Wan).
    1 This author now is working in Hengyang Normal University.
  • Received Date: 8 January 2020
    Revised Date: 11 February 2020
    Accepted Date: 20 February 2020
    Available Online: 21 February 2020

Figures(4)

  • To discover novel fluorophores of solution and solid dual-state emission (DSE) materials, unique V-shape furo[2, 3-b]furans have been designed and synthesized by a one-pot method for the first time and their photoluminescent properties have been explored in benzene, THF, DMF and DMSO, as well as in the solid state. As the best example, 2, 5-bis(4-(9H-carbazol-9-yl)phenyl)-6a-amino-3a, 6a-dihydrofuro[2, 3-b] furan-3, 3a, 4-tricarbonitrile (3g) exhibited solution and solid DSE properties in THF, benzene, and in the solid state with quantum yields of 55%, 92%, and 45%, respectively.
  • 加载中
    1. [1]

      (a) B. valeur, M.N. Berberan-Santos, Molecular Fluorescence-Principles and Applications, 2nd ed., Wiley-VCH Verlag & Co., Weinheim, 2012;
      (b) A.S. Klymchenko, Acc. Chem. Res. 50 (2017) 366-375;
      (c) V.M. Alexander, P.L. Choyke, H. Kobayashi, Curr. Mol. Med. 13 (2013) 1568-1578;
      (d) S. Mizukami, H. Houjou, K. Sugaya, et al., Chem. Mater. 17 (2005) 50-56;
      (e) S.C.F. Kui, S.S.Y. Chui, C.M. Che, N. Zhu, J. Am. Chem. Soc. 128 (2006) 8297-8309.

    2. [2]

      (a) T. Qin, W. Wiedemair, S. Nau, et al., J. Am. Chem. Soc. 133 (2011) 1301-1303;
      (b) L. Duan, J. Qiao, Y. Sun, Y. Qiu, Adv. Mater. 23 (2011) 1137-1144;
      (c) A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev. 109 (2009) 897-1091;
      (d) R.H. Friend, R.W. Gymer, A.B. Holmes, et al., Nature 397 (1999) 121-128;
      (e) T. Khanasa, N. Prachumrak, R. Rattanawan, et al., J. Org. Chem. 78 (2013) 6702-6713.

    3. [3]

      (a) J. Zhang, W. Chen, A.J. Rojas, et al., J. Am. Chem. Soc. 135 (2013) 16376-16379;
      (b) H. Lu, C. Zhang, G. Xia, et al., RSC Adv. 6 (2016) 96196-96201.

    4. [4]

      (a) T. Weil, T. Vosch, J. Hofkens, K. Peneva, K. Mullen, Angew. Chem. Int. Ed. 49 (2010) 9068-9093;
      (b) T. Mutai, T. Ohkawa, H. Shono, K. Araki, J. Mater. Chem. C 4 (2016) 3599-3606.

    5. [5]

      (a) Z. Zhang, B. Xu, J. Su, et al., Angew. Chem. Int. Ed. 50 (2011) 11654-11657;
      (b) B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park, J. Am. Chem. Soc. 124 (2002) 14410-14415;
      (c) J. Luo, Z. Xie, J.W. Y. Lam, et al., Chem. Commun. (2001) 1740-1741;
      (d) S.P. Anthony, ChemPlusChem 77 (2012) 518-531.

    6. [6]

      (a) X. You, G. Zhang, C. Zhan, Y. Wang, D. Zhang, ACS Symp. Ser. 1227 (2016) 93-127;
      (b) C. Zhan, X. You, G. Zhang, et al., Chem. Rec. 16 (2016) 2142-2160.

    7. [7]

      D. Mao, D. Ding, ACS Symp. Ser. 1227 (2016) 217-243.

    8. [8]

      (a) S.H. Bae, K.D. Seo, W.S. Choi, J.Y. Hong, H.K. Kim, Dyes Pigm. 113 (2015) 18-26;
      (b) N. Manfredi, B. Cecconi, A. Abbotto, Eur. J. Org. Chem. 2014 (2014) 7069-7086.

    9. [9]

      Z. Chi, J. Xu, Mechanochromic Aggregation-Induced Emission Materials in Aggregation-Induced Emiss. Appl, John Wiley & Sons, Ltd, 2013, pp. 61-86.

    10. [10]

      (a) X. Sun, Y. Wang, Y. Lei, Chem. Soc. Rev. 44 (2015) 8019-8061;
      (b) J.L. Banal, B. Zhang, D.J. Jones, K.P. Ghiggino, W.W. H. Wong, Acc. Chem. Res. 50 (2017) 49-57;
      (c) Y. Yuan, B. Liu, Chem. Sci. 8 (2017) 2537-2546;
      (d) X. Gu, T.K. Kwok Ryan, W.Y. Lam Jacky, B.Z. Tang, Biomaterials 146 (2017) 115-135;
      (e) Y. Hong, W.Y. Lam Jacky, B.Z. Tang, Chem. Soc. Rev. 40 (2011) 5361-5388;
      (f) T.K. Kwok Ryan, W.T. Leung Chris, W.Y. Lam Jacky, B.Z. Tang, Chem. Soc. Rev. 44 (2015) 4228-4238;
      (g) P. Zhao, L. Zhu, Chin. Chem. Lett. 29 (2018) 1706-1708.

    11. [11]

      G. Chen, W. Li, T. Zhou, et al., Adv. Mater. 27 (2015) 4496-4501.  doi: 10.1002/adma.201501981

    12. [12]

      B. Chen, G. Yu, X. Li, et al., J. Mater. Chem. C 1 (2013) 7409-7417.  doi: 10.1039/c3tc31751j

    13. [13]

      (a) T. Beppu, K. Tomiguchi, A. Masuhara, Y.J. Pu, H. Katagiri, Angew. Chem. Int. Ed. 54 (2015) 7332-7335;
      (b) A. Patra, S.P. Anthony, T.P. Radhakrishnan, Adv. Funct. Mater. 17 (2007) 2077-2084;
      (c) S. Kumar, P. Singh, P. Kumar, et al., J. Phys. Chem. C 120 (2016) 12723-12733;
      (d) H. Wu, Z. Chen, W. Chi, et al., Angew. Chem. Int. Ed. 58 (2019) 11419-11423.

    14. [14]

      (a) D.K. You, J.H. Lee, B.H. Choi, et al., Eur. J. Inorg. Chem. 2017 (2017) 2496-2503;
      (b) A. Raghuvanshi, A.K. Jha, A. Sharma, et al., Chem. Eur. J. 23 (2017) 4527-4531;
      (c) H. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 56 (2017) 254-259;
      (d) P. Gopikrishna, P.K. Iyer, J. Phys. Chem. C 120 (2016) 26556-26568.

    15. [15]

      A. C. Shaikh, D.S. Ranade, S. Thorat, et al., Chem. Commun. 51 (2015) 16115-16118.  doi: 10.1039/C5CC06351E

    16. [16]

      H. Yamane, K. Tanaka, Y. Chujo, Tetrahedron Lett. 56 (2015) 6786-6790.  doi: 10.1016/j.tetlet.2015.10.072

    17. [17]

      (a) M. Huang, S. Ye, K. Xu, et al., J. Mater. Chem. C 5 (2017) 3456-3460;
      (b) E. Heyer, J. Massue, G. Ulrich, Dyes Pigm. 143 (2017) 18-24;
      (c) E. Heyer, K. Benelhadj, S. Budzak, et al., Chem. Eur. J. 23 (2017) 7324-7336.

    18. [18]

      (a) P. Vila-Donat, S. Marin, V. Sanchis, A.J. Ramos, Food Chem. Toxicol. 114 (2018) 246-259;
      (b) Y. Hayashi, T. Aikawa, Y. Shimasaki, et al., Org. Process Res. Dev. 20 (2016) 1615-1620;
      (c) G.L. Moore, R.W. Stringham, D.S. Teager, T.Y. Yue, Org. Process Res. Dev. 21 (2017) 98-106.

    19. [19]

      V. J. Aran, N. Martin, C. Seoane, J.L. Soto, J. Sanz-Aparicio, F. Florencio, J. Org. Chem. 53 (1988) 5341-5343.  doi: 10.1021/jo00257a025

    20. [20]

      (a) G. Sathiyan, P. Sakthivel, Dyes Pigm. 143 (2017) 444-454;
      (b) G. Gopan, P.S. Salini, S. Deb, M. Hariharan, CrystEngComm 19 (2017) 419-425;
      (c) W.Y. Wong, S.F. Lee, H.S. Chan, et al., RSC Adv. 3 (2013) 26382-26390;
      (d) S. Sekiguchi, K. Kondo, Y. Sei, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 55 (2016) 6906-6910.

    21. [21]

      J. Zhou, X. Zhu, M. Huang, Y. Wan, Eur. J. Org. Chem. 2017 (2017) 2317-2321.  doi: 10.1002/ejoc.201700383

    22. [22]

      H. Tong, Y. Hong, Y. Dong, et al., J. Phys. Chem. B 111 (2007) 2000-2007.  doi: 10.1021/jp067374k

  • 加载中
    1. [1]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    2. [2]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    3. [3]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    4. [4]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    5. [5]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    6. [6]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    7. [7]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    8. [8]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    9. [9]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    10. [10]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    11. [11]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    12. [12]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    13. [13]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    14. [14]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    15. [15]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    16. [16]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    17. [17]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    18. [18]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

Metrics
  • PDF Downloads(16)
  • Abstract views(935)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return