Citation: Wang Zelong, Chen Lei, Mao Guoliang, Wang Congyang. Simple manganese carbonyl catalyzed hydrogenation of quinolines and imines[J]. Chinese Chemical Letters, ;2020, 31(7): 1890-1894. doi: 10.1016/j.cclet.2020.02.025 shu

Simple manganese carbonyl catalyzed hydrogenation of quinolines and imines

    * Corresponding author at:Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
    ** Corresponding author.
    E-mail addresses: maoguoliang@nepu.edu.cn (G. Mao) , wangcy@iccas.ac.cn (C. Wang).
  • Received Date: 13 January 2020
    Revised Date: 11 February 2020
    Accepted Date: 13 February 2020
    Available Online: 14 February 2020

Figures(6)

  • Manganese-catalyzed hydrogenation of unsaturated molecules has made tremendous progresses recently benefiting from non-innocent pincer or bidentate ligands for manganese. Herein, we describe the hydrogenation of quinolines and imines catalyzed by simple manganese carbonyls, Mn2(CO)10 or MnBr(CO)5, thus eliminating the prerequisite pincer-type or bidentate ligands.
  • 加载中
    1. [1]

      De Vries J.G., Elsevier C.J.. The Handbook of Homogeneous Hydrogenation[J]. Wiley-VCH.Weinheim, 2007.  

    2. [2]

      (a) R. Noyori, T. Ohkuma, Angew. Chem. Int. Ed. 40 (2001) 40-73;
      (b) J.H. Xie, S.F. Zhu, Q.L. Zhou, Chem. Rev. 111 (2011) 1713-1760;
      (c) B. Zhao, Z. Han, K. Ding, Angew. Chem. Int. Ed. 52 (2013) 4744-4788;
      (d) Y.M. He, Y. Feng, Q.H. Fan, Acc. Chem. Res. 47 (2014) 2894-2906;
      (e) D.S. Wang, Q.A. Chen, S.M. Lu, Y.G. Zhou, Chem. Rev. 112 (2012) 2557-2590;
      (f) W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029-3069.

    3. [3]

      (a) Z. Zhang, N.A. Butt, M. Zhou, D. Liu, W. Zhang, Chin. J. Chem. 36 (2018) 443-454;
      (b) G.A. Filonenko, R. van Putten, E.J.M. Hensen, E.A. Pidko, Chem. Soc. Rev. 47 (2018) 1459-1483;
      (c) W. Liu, B. Sahoo, K. Junge, M. Beller, Acc. Chem. Res. 51 (2018) 1858-1869;
      (d) W. Ai, R. Zhong, X. Liu, Q. Liu, Chem. Rev. 119 (2019) 2876-2953;
      (e) T. Irrgang, R. Kempe, Chem. Rev. 119 (2019) 2524-2549;
      (f) L. Alig, M. Fritz, S. Schneider, Chem. Rev. 119 (2019) 2681-2751.

    4. [4]

      (a) D.A. Valyaev, G. Lavigne, N. Lugan, Coord. Chem. Rev. 308 (2016) 191-235;
      (b) W. Liu, L. Ackermann, ACS Catal. 6 (2016) 3743-3752;
      (c) J.R. Carney, B.R. Dillon, S.P. Thomas, Eur. J. Org. Chem. 2016 (2016) 3912-3929;
      (d) M. Garbe, K. Junge, M. Beller, Eur. J. Org. Chem. 30 (2017) 4344-4362;
      (e) R.J. Trovitch, Acc. Chem. Res. 50 (2017) 2842-2852;
      (f) A. Mukherjee, D. Milstein, ACS Catal. 8 (2018) 11435-11469;
      (g) Y. Hu, B. Zhou, C. Wang, Acc. Chem. Res. 51 (2018) 816-827;
      (h) X. Yang, C. Wang, Chem. Asian J. 13 (2018) 2307-2315.

    5. [5]

      (a) B. Maji, M. Barman, Synthesis 49 (2017) 3377-3393;
      (b) F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 57 (2018) 46-60;
      (c) N. Gorgas, K. Kirchner, Acc. Chem. Res. 51 (2018) 1558-1569.

    6. [6]

      (a) S. Elangovan, C. Topf, S. Fischer, et al., J. Am. Chem. Soc. 138 (2016) 8809-8814;
      (b) F. Kallmeier, T. Irrgang, T. Dietel, R. Kempe, Angew. Chem. Int. Ed. 55 (2016) 11806-11809;
      (c) A. Bruneau-Voisine, D. Wang, T. Roisnel, C. Darcel, J.B. Sortais, Catal. Commun. 92 (2017) 1-4;
      (d) D. Wei, A. Bruneau-Voisine, T. Chauvin, et al., Adv. Synth. Catal. 360 (2018) 676-681;
      (e) S. Weber, B. Stoeger, K. Kirchner, Org. Lett. 20 (2018) 7212-7215;
      (f) M. Glatz, B. Stoger, D. Himmelbauer, L.F. Veiros, K. Kirchner, ACS Catal. 8 (2018) 4009-4016.

    7. [7]

      (a) M.B. Widegren, G.J. Harkness, A.M. Slawin, D.B. Cordes, M.L. Clarke, Angew. Chem. Int. Ed. 56 (2017) 5825-5828;
      (b) M. Garbe, K. Junge, S. Walker, et al., Angew. Chem. Int. Ed. 56 (2017) 11237-11241;
      (c) M. Garbe, Z. Wei, B. Tannert, et al., Adv. Synth. Catal. 361 (2019) 1913-1920;
      (d)L.Zhang, Y.Tang, Z.Han, K.Ding, Angew.Chem.Int.Ed.58 (2019)4973-4977;
      (e) F. Ling, H. Hou, J. Chen, et al., Org. Lett. 21 (2019) 3937-3941.

    8. [8]

      J.A. Garduno, J.J. García, ACS Catal. 9 (2019) 392-401.  doi: 10.1021/acscatal.8b03899

    9. [9]

      (a) A. Dubey, L. Nencini, R.R. Fayzullin, C. Nervi, J.R. Khusnutdinova, ACS Catal. 7 (2017) 3864-3868;
      (b) F. Bertini, M. Glatz, N. Gorgas, et al., Chem. Sci. 8 (2017) 5024-5029;
      (c) S. Kar, A. Goeppert, J. Kothandaraman, G.K.S. Prakash, ACS Catal. 7 2017) 6347-6351.

    10. [10]

      (a) A. Kumar, T. Janes, N.A. Espinosa-Jalapa, D. Milstein, Angew. Chem. Int. Ed. 57 (2018) 12076-12080;
      (b) V. Zubar, Y. Lebedev, L.M. Azofra, et al., Angew. Chem. Int. Ed. 57 (2018) 13439-13443;
      (c) A. Kaithal, M. Hoelscher, W. Leitner, Angew. Chem. Int. Ed. 57 (2018) 13449-13453.

    11. [11]

      (a) V.Papa, J.R.Cabrero-Antonino, E.Alberico, etal., Chem.Sci.8 (2017) 3576-3585;
      (b) Y.Q. Zou, S. Chakraborty, A. Nerush, et al., ACS Catal. 8 (2018) 8014-8019.

    12. [12]

      (a) S. Elangovan, M. Garbe, H. Jiao, et al., Angew. Chem. Int. Ed. 55 (2016) 15364-15368;
      (b) R. van Putten, E.A. Uslamin, M. Garbe, et al., Angew. Chem. Int. Ed. 56 (2017) 7531-7534;
      (c) N.A. Espinosa-Jalapa, A. Nerush, L.J. Shimon, et al., Chem. Eur. J. 23 (2017) 5934-5938;
      (d) M.B. Widegren, M.L. Clarke, Org. Lett. 20 (2018) 2654-2658.

    13. [13]

      U.K. Das, A. Kumar, Y. Ben-David, M.A. Iron, D. Milstein, J. Am. Chem. Soc. 141 (2019) 12962-12966.  doi: 10.1021/jacs.9b05591

    14. [14]

      (a) D. Wei, A. Bruneau-Voisine, D.A. Valyaev, N. Lugan, J.B. Sortais, Chem. Commun. 54 (2018) 4302-4305;
      (b) F. Freitag, T. Irrgang, R. Kempe, J. Am. Chem. Soc. 141 (2019) 11677-11685;
      (c) Y. Wang, L. Zhu, Z. Shao, et al., J. Am. Chem. Soc. 141 (2019) 17337-17349.

    15. [15]

      (a) R. He, Z.T. Huang, Q.Y. Zheng, C. Wang, Angew. Chem. Int. Ed. 53 (2014) 4950-4953;
      (b) X. Yang, C. Wang, Angew. Chem. Int. Ed. 57 (2018) 923-928;
      (c) X. Yang, C. Wang, Chin. J. Chem. 36 (2018) 1047-1051.

    16. [16]

      V. Papa, Y. Cao, A. Spannenberg, K. Junge, M. Beller, Nat. Catal. 3 (2020) 135-142.  doi: 10.1038/s41929-019-0404-6

  • 加载中
    1. [1]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    4. [4]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    5. [5]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    6. [6]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    7. [7]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    8. [8]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    9. [9]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    10. [10]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    11. [11]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    12. [12]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    13. [13]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    16. [16]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    17. [17]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    18. [18]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    19. [19]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    20. [20]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

Metrics
  • PDF Downloads(13)
  • Abstract views(767)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return