Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors
-
* Corresponding author.
E-mail address: wenyang@bit.edu.cn (W. Yang).
Citation:
Utetiwabo Wellars, Yang Le, Tufail Muhammad Khurram, Zhou Lei, Chen Renjie, Lian Yimeng, Yang Wen. Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors[J]. Chinese Chemical Letters,
;2020, 31(6): 1474-1489.
doi:
10.1016/j.cclet.2020.01.003
M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335(2012) 1326-1330.
doi: 10.1126/science.1216744
P. Simon, Y. Gogotsi, Nat. Mater. 7(2008) 845-854.
doi: 10.1038/nmat2297
G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41(2012) 797-828.
doi: 10.1039/C1CS15060J
P. Simon, Y. Gogotsi, B. Dunn, Science 343(2014) 1210-1211.
doi: 10.1126/science.1249625
Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8(2015) 702-730.
K. Naoi, S. Ishimoto, J.I. Miyamoto, W. Naoi, Energy Environ. Sci. 5(2012) 9363-9373.
doi: 10.1039/c2ee21675b
L.L. Zhang, X. Zhao, Chem. Soc. Rev. 38(2009) 2520-2531.
doi: 10.1039/b813846j
H. Helmholtz, Ann. Phys. 89(1853) 211-233.
M.S. Park, Y.G. Lim, J.H. Kim, et al., Adv. Energy Mater. 1(2011) 1002-1006.
doi: 10.1002/aenm.201100270
L.G. Gouy, J. Phys.Theor.Appl. 9(1910) 45-468.
O. Stern, Z. Elektromie, Angew. Phys. Chem. 30(1924) 508-516.
V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, Chem. Rev. 114(2014) 11619-11635.
doi: 10.1021/cr5000915
J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Adv. Funct. Mater. 28(2018) 1804663.
doi: 10.1002/adfm.201804663
Q. Rong, W. Lei, J. Huang, M. Liu, Adv. Energy Mater. 8(2018) 1801967.
doi: 10.1002/aenm.201801967
X.J. Wang, L.L. Liu, Z.Q. Niu, Mater. Chem. Front. 3(2019) 1265-1279.
doi: 10.1039/C9QM00062C
S. Repp, E. Harputlu, S. Gurgen, et al., Nanoscale 10(2018) 1877-1884.
doi: 10.1039/C7NR08190A
Z. Lin, E. Goikolea, A. Balducci, et al., Mater. Today 21(2018) 419-436.
doi: 10.1016/j.mattod.2018.01.035
K. Naoi, P. Simon, Interface 17(2008) 34-37.
T. Brousse, M. Toupin, R. Dugas, et al., J. Electrochem. Soc. 153(2006) A2171-A2180.
doi: 10.1149/1.2352197
A. Rudge, I. Raistrick, S. Gottesfeld, J.P. Ferraris, J. Power Sources 47(1994) 89-107.
doi: 10.1016/0378-7753(94)80053-7
X. Qin, S. Durbach, G.T. Wu, Carbon 42(2004) 451-453.
doi: 10.1016/j.carbon.2003.11.012
V. Gupta, N. Miura, Electrochim. Acta 52(2006) 1721-1726.
doi: 10.1016/j.electacta.2006.01.074
Y.G. Wang, Y.Y. Xia, Adv. Mater. 25(2013) 5336-5342.
doi: 10.1002/adma.201301932
Z.H. Wen, X.C. Wang, S. Mao, et al., Adv.Mater. 24(2012) 5160-5616.
K. Naoi, W. Naoi, S. Aoyagi, J.I. Miyamoto, T. Kamino, Acc. Chem. Res. 5(2013) 1075-1083.
A.G. Pandlofo, A.F. Hollenkamp, J. Power Sources 157(2006) 11-27.
doi: 10.1016/j.jpowsour.2006.02.065
G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, J. Electrochem. Soc. 148(2001) A930-A939.
doi: 10.1149/1.1383553
K. Naoi, Fuel Cells 10(2010) 825-833.
doi: 10.1002/fuce.201000041
M. Beidaghi, Y. Gogotsi, Energy Environ. Sci. 7(2014) 867-884.
doi: 10.1039/c3ee43526a
A. Yoshino, T. Tsubata, M. Shimoyamada, et al., J. Electrochem. Soc.151(2004) A2180-A2182.
doi: 10.1149/1.1813671
W.L. Zhang, J. Wang, D.B. Ruan, et al., Chem. Eng. J. 373(2019) 1012-1019.
doi: 10.1016/j.cej.2019.05.039
F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26(2014) 2219-2251.
doi: 10.1002/adma.201304137
L.P. Yu, G.Z. Chen, Front. Chem. 7(2019) 272.
doi: 10.3389/fchem.2019.00272
K.S.W. Sing, D.H. Everett, R.A.V. Haul, et al., Pure Appl. Chem. 57(1985) 603-619.
doi: 10.1351/pac198557040603
J.S. Huang, B.G. Sumpter, V. Meunier, Angew. Chem. Int. Ed. 47(2008) 520-524.
doi: 10.1002/anie.200703864
J.S. Huang, B.G. Sumpter, V. Meunier, Chem.-Eur. J. 14(2008) 6614-6626.
doi: 10.1002/chem.200800639
Y. Gogotsi, V. Presser, Carbon Nanomaterials, 2nd ed., CRC Press, Boca Raton, 2006.
L.L. Zhang, Y. Gu, X. Zhao, J. Mater. Chem. A 1(2013) 9395-9408.
L. Weinstein, R. Dash, Mater. Today 16(2013) 356-357.
doi: 10.1016/j.mattod.2013.09.005
M. Okan, H.M. Aydin, M. Barsbay, J. Chem. Technol. Biotechnol. 94(2019) 8-21.
doi: 10.1002/jctb.5778
G.X. Wang, L. Liu, L.L. Zhang, et al., J. Electronic Mater. 47(2018) 5816-5824.
doi: 10.1007/s11664-018-6497-x
M.J. Zhi, F. Yang, F.K. Meng, et al., ACS Chem. Eng. 2(2014) 1592-1598.
doi: 10.1021/sc500336h
P.P. Zhao, Y. Han, X.T. Dong, C. Zhang, S.X. Liu, ECS J. Solid State Sci. Technol. 4(2015) M35-M40.
doi: 10.1149/2.0271505jss
H. Shi, Electrochim. Acta 41(1996) 1633-1639.
doi: 10.1016/0013-4686(95)00416-5
H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6(2013) 41-53.
doi: 10.1039/C2EE23284G
M. Sevilla, R. Mokaya, Energy Environ. Sci. 7(2014) 1250-1280.
doi: 10.1039/C3EE43525C
R.R. Rajagopal, L.S. Aravinda, R. Rajarao, et al., Electrochim. Acta 211(2016) 488-498.
doi: 10.1016/j.electacta.2016.06.077
C. Wang, D. Li, T. Zhai, et al., Energy Storage Mater. 23(2019) 499-507.
doi: 10.1016/j.ensm.2019.04.014
L. Sun, C.L. Wang, Y. Zhou, X. Zhang, J.S. Qiu, J. Appl. Electrochem. 44(2014) 309-316.
doi: 10.1007/s10800-013-0636-0
T. Otowa, R. Tanibata, M. Itoh, Gas Sep. Purif. 7(1993) 241-245.
doi: 10.1016/0950-4214(93)80024-Q
D. Lozano-Castelló, J.M. Calo, D. Cazorla-Amorós, A. Linares-Solano, Carbon 45(2007) 2529-2536.
doi: 10.1016/j.carbon.2007.08.021
E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, et al., Carbon 43(2005) 786-795.
doi: 10.1016/j.carbon.2004.11.005
W. Qiao, S.H. Yoon, I. Mochida, Energy Fuels 20(2006) 1680-1684.
doi: 10.1021/ef050313l
H. Wang, Q. Gao, J. Hu, J. Am. Chem. Soc. 131(2009) 7016-7022.
doi: 10.1021/ja8083225
A. Świątkowski, Studies in surface science and catalysis, in: A. Dąbrowski (Ed.), Adsorption and Its Applications in Industry and Environmental Protection, Elsevier Science B.V., 1999, pp. 69-94.
J. Romanos, M. Beckner, T. Rash, et al., Nanotechnology 23(2012) 015401.
doi: 10.1088/0957-4484/23/1/015401
J. Wang, S. Kaskel, J. Mater.Chem. 22(2012) 23710-23725.
doi: 10.1039/c2jm34066f
X.J. He, R.C. Li, J.S. Qiu, et al., Carbon 50(2012) 4911-4921.
doi: 10.1016/j.carbon.2012.06.020
H. Zhang, X.L. Zhou, L.M. Shao, F. Lu, P.J. He, ACS Sustainable Chem. Eng. 7(2019) 3801-3810.
doi: 10.1021/acssuschemeng.8b04539
B.B. Chang, Y.Z. Guo, Y.C. Li, B.C. Yang, RSC Adv. 5(2015) 72019-72027.
doi: 10.1039/C5RA12651G
Y.M. Lian, M. Ni, Z.H. Huang, et al., Chem. Engin. J. 366(2019) 313-320.
doi: 10.1016/j.cej.2019.02.063
P.W. Yu, R.J. Chen, Q. Zhang, et al., Sci. Bull. 63(2018) 213-215.
doi: 10.1016/j.scib.2018.01.012
P. Abudu, L.X. Wang, M.J. Xu, et al., Chem. Phys. Lett. 702(2018) 1-7.
doi: 10.1016/j.cplett.2018.04.055
T.T. Guan, K.X. Li, J.H. Zhao, et al., J. Mater. Chem. A 5(2017) 15869-15878.
doi: 10.1039/C7TA02966G
X.Z. Shi, S. Zhang, X.C. Chen, E. Mijowska, Nanomaterials 9(2019) 601.
doi: 10.3390/nano9040601
A. Jain, R. Balasubramanian, M. Srinivasan, Chem. Eng. J. 283(2016) 789-805.
doi: 10.1016/j.cej.2015.08.014
N.A. Elessawy, J. El Nady, W. Wazeer, A.B. Kashyout, Sci. Rep. 9(2019) 1129-1138.
doi: 10.1038/s41598-018-37369-x
J. Jiang, J.H. Zhu, W. Ai, et al., Energy Environ. Sci. 7(2014) 2670-2679.
doi: 10.1039/C4EE00602J
M. Sevilla, A.B. Fuertes, R. Mokaya, Energy Environ. Sci. 4(2011) 1400-1410.
doi: 10.1039/c0ee00347f
W.T. Gu, M. Sevilla, A. Magasinski, A.B. Fuertes, G. Yushin, Energy Environ. Sci. 6(2013) 2465-2476.
doi: 10.1039/c3ee41182f
J. Gong, X.C. Chen, T. Tang, Progress Polym. Sci. 94(2019) 1-32.
doi: 10.1016/j.progpolymsci.2019.04.001
J. Gong, X. Chen, X. Wen, et al., Sci. Sin. Chim. 48(2019) 829-843.
Y.M. Lian, M. Ni, L. Zhou, R.J. Chen, W. Yang, Chem.-A Eur.J. 24(2018) 18068-18074.
doi: 10.1002/chem.201803836
S. Yoshida, K. Hiraga, T. Takehana, et al., Science 351(2016) 1196-1199.
doi: 10.1126/science.aad6359
X. Han, W.D. Liu, J.W. Huang, et al., Nat. Commun. 8(2017) 2106.
doi: 10.1038/s41467-017-02255-z
C.W. Zhuo, Y.A. Levendis, J. Appl. Polym. Sci. 131(2014) 39931.
R. Geyer, J.R. Jambeck, K.L. Law, Sci. Adv. 3(2017) 1-5.
Y.M. Lian, W. Utetiwabo, Y. Zhou, et al., J. Colloid Interface Sci. 557(2019) 55-64.
doi: 10.1016/j.jcis.2019.09.003
X.Y. Chen, L.X. Cheng, X. Deng, et al., J. Ind. Eng. Chem. Res. 53(2014) 6990-6997.
doi: 10.1021/ie500685s
M.A. Keane, ChemSusChem 2(2009) 207-214.
doi: 10.1002/cssc.200900001
Y.N. Chang, Y.C. Pang, Q.D. Dang, et al., ACSAppl. Energy Mater.1(2018) 5685-5693.
Y.N. Chang, G.X. Zhang, B. Han, et al., ACS Appl. Mater. Interfaces 9(2017) 29753-29759.
doi: 10.1021/acsami.7b08181
X.Y. Chen, L.X. Cheng, X. Deng, L. Zhang, Z.J. Zhang, Ind. Eng. Chem. Res. 53(2014) 6990-6997.
doi: 10.1021/ie500685s
L.X. Cheng, Y.Q. Zhu, X.Y. Chen, Z.J. Zhang, Ind. Eng. Chem. Res. 54(2015) 9948-9955.
doi: 10.1021/acs.iecr.5b02490
Y.X. Zhang, Z.M. Shen, Y.F. Yu, et al., J. Mater. Sci. 53(2018) 12115-12122.
doi: 10.1007/s10853-018-2513-z
C. Ma, X.G. Liu, J.K. Min, et al., Nanotechnology 31(2020) 035402.
doi: 10.1088/1361-6528/ab475f
Y.L. Wen, X. Wen, K. Wenelska, X.C. Chen, E. Mijowska, Diamond Related Mater. 95(2019) 5-13.
doi: 10.1016/j.diamond.2019.03.015
J.K. Min, S. Zhang, J.X. Li, et al., Waste Manag. 85(2019) 333-340.
Y.L. Wen, K. Kierzek, J.K. Min, et al., J. Appl. Polym. Sci. 137(2019) 48338.
Y.L. Wen, K. Kierzek, X.C. Chen, et al., Waste Manag. 87(2019) 691-700.
doi: 10.1016/j.wasman.2019.03.006
X. Wen, X.C. Chen, N.N. Tian, et al., Environ. Sci. Technol. 48(2014) 4048-4055.
J. Gong, B. Michalkiewicz, X.C. Chen, et al., ACS Sustainable Chem. Eng. 2(2014) 2837-2844.
A. Quek, R. Balasubramanian, J. Anal. Appl. Pyrolysis 101(2013) 1-16.
doi: 10.1016/j.jaap.2013.02.016
M. Boota, M.P. Paranthaman, A.K. Naskar, et al., ChemSusChem 8(2015) 3576-3581.
doi: 10.1002/cssc.201500866
R. Rajarao, V. Sahajwalla, R. Cayumil, M. Park, R. Khanna, Proc. Environ. Sci. 21(2014) 33-41.
doi: 10.1016/j.proenv.2014.09.005
I.O. Ogunniyi, M.K.G. Vermaak, D.R. Groot, Waste Manag. 29(2009) 2140-2146.
doi: 10.1016/j.wasman.2009.03.004
Y.H. Ke, E.T. Yang, X. Liu, C.L. Liu, W.S. Dong, New Carbon Mater. 28(2013) 108-114.
doi: 10.1016/S1872-5805(13)60069-4
R. Zevenhoven, L. Saeed, Automotive Shredder Residue (ASR) and Compact Disc (CD) Waste: Options for Recovery of Materials and Energy, Helsinki University of Technology, Espoo (Finland), 2003 p. 74.
R. Farzana, R. Rajarao, B.R. Bhat, V. Sahajwalla, J. Industrial Engin. Chem. 65(2018) 387-396.
doi: 10.1016/j.jiec.2018.05.011
X.J. He, H.B. Zhang, H. Zhang, et al., J. Mater. Chem. A 2(2014) 19633-19640.
doi: 10.1039/C4TA03323J
X.J. He, H. Ma, J.X. Wang, et al., J. Power Sources 357(2017) 41-46.
doi: 10.1016/j.jpowsour.2017.04.108
N. Konikkara, L.J. Kennedy, Mater. Lett. 205(2017) 56-61.
doi: 10.1016/j.matlet.2017.06.048
J. Pang, W.F. Zhang, J.L. Zhang, et al., Green Chem. 19(2017) 3916-3926.
doi: 10.1039/C7GC01434A
C.J. Xuan, Z.K. Peng, J. Wang, et al., Chin. Chem. Lett. 28(2017) 2227-2230.
doi: 10.1016/j.cclet.2017.09.009
S. Herou, M.C. Ribadeneyra, R. Madhu, et al., Green Chem. 21(2019) 550-559.
doi: 10.1039/C8GC03497D
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Haining Peng , Huijun Liu , Chengzong Li , Yingfu Li , Qizhi Chen , Tao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Zhenqiang Guo , Huicong Yang , Qian Wei , Shengjun Xu , Guangjian Hu , Shuo Bai , Feng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049