Citation: Pramanick Pranab K., Zhou Zhibing, Hou Zhenlin, Ao Yufei, BoYao. Native amine-directed site-selective C(sp3)-H arylation of primary aliphatic amines with aryl iodides[J]. Chinese Chemical Letters, ;2020, 31(5): 1327-1331. doi: 10.1016/j.cclet.2019.10.034 shu

Native amine-directed site-selective C(sp3)-H arylation of primary aliphatic amines with aryl iodides

    *Corresponding author at: MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
    E-mail address: yaobo@bit.edu.cn (B. Yao).
    1The authors contributed equally to the work.
  • Received Date: 11 September 2019
    Revised Date: 23 October 2019
    Accepted Date: 28 October 2019
    Available Online: 2 November 2019

Figures(4)

  • Direct C(sp3)-H functionalization of N-unprotected aliphatic amines represents one of the most efficient and straightforward strategies for amine synthesis. Despite some recent progress in this field, the NH2-directed γ-C(sp3)-H arylation of primary aliphatic amines except α-amino esters remained an unmet challenge. In this report, we established a simple and efficient method for site-selective C(sp3)-H arylation of primary aliphatic amines by aryl iodides. In the presence of only 5 mol% Pd(OAc)2, a wide range of aliphatic amines including O-benzyl and O-silyl amino alcohols were arylated at γ-or δ-positions by aryl iodides containing a broad scope of functional groups. The synthetic application of this method had also been demonstrated by large-scale synthesis, the synthesis of a fingolimod analogue, and the conjugation with natural D-menthol and fluorescent 1, 8-naphthalimide.
  • 加载中
    1. [1]

      (a) S. Jeanmart, A.J.F. Edmunds, C. Lamberth, M. Pouliot, Bioorg. Med. Chem. 24 (2016) 317-341;
      (b) P. Das, M.D. Delost, M.H. Qureshi, D.T. Smith, J.T. Njardarson, J. Med. Chem. 62 (2019) 4265-4311;
      (c) F.Z. Dörwald, Aliphatic amines, in: F.Z. Dörwald (Ed.), Lead Optimization for Medicinal Chemists: Pharmacokinetic Properties of Functional Groups and Organic Compounds, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012, pp. 107-117.

    2. [2]

      (a) J.F. Knifton, Catal. Today 36 (1997) 305-310;
      (b) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247-9301;
      (c) P. Kalck, M. Urrutigoity, Chem. Rev. 118 (2018) 3833-3861.

    3. [3]

      (a) B.D. Dangel, J.A. Johnson, D. Sames, J. Am. Chem. Soc. 123 (2001) 8149-8150;
      (b) M. Lee, M.S. Sanford, J. Am. Chem. Soc. 137 (2015) 12796-12799;
      (c) C.T. Mbofana, E. Chong, J. Lawniczak, M.S. Sanford, Org. Lett. 18 (2016) 4258-4261;
      (d) M. Lee, M.S. Sanford, Org. Lett. 19 (2017) 572-575.

    4. [4]

      (a) C. Martínez, K. Muñiz, Angew. Chem. Int. Ed. 54 (2015) 8287-8291;
      (b) E.A. Wappes, S.C. Fosu, T.C. Chopko, D.A. Nagib, Angew. Chem. Int. Ed. 55 (2016) 9974-9978;
      (c) G.J. Choi, Q. Zhu, D.C. Miller, C.J. Gu, R.R. Knowles, Nature 539 (2016) 268;
      (d) J.C.K. Chu, T. Rovis, Nature 539 (2016) 272;
      (e) M.Y. Yang, B. Su, Y. Wang, et al., Nat. Commun. 5(2014) 5707;
      (f) Z. Li, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 57 (2018) 13288-13292.

    5. [5]

      S. Munnuri, A.M. Adebesin, M.P. Paudyal, et al., J. Am. Chem. Soc. 139 (2017) 18288-18294.  doi: 10.1021/jacs.7b09901

    6. [6]

      (a) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 52 (2013) 11726-11743;
      (b) O. Daugulis, J. Roane, L.D. Tran, Acc. Chem. Res. 48 (2015) 1053-1064;
      (c) B. Liu, Y.Q. Han, F. Hu, B.F. Shi, Palladium-catalyzed directed arylation of unactivated C(sp3)-H bonds, in: A.R. Kapdi, D. Maiti (Eds.), Strategies for Palladium-Catalyzed Non-Directed and Directed C-H Bond Functionalization, Elsevier, 2017, pp. 167-203;
      (d) C. He, W.G. Whitehurst, M.J. Gaunt, Chem. 5(2019) 1031-1058.

    7. [7]

      (a) Z. Liang, L. Ju, Y. Xie, L. Huang, Y. Zhang, Chem. -Eur. J. 18 (2012) 15816-15821;
      (b) C. Suzuki, K. Hirano, T. Satoh, M. Miura, Org. Lett. 15 (2013) 3990-3993;
      (c) A. Boelke, L.D. Caspers, B.J. Nachtsheim, Org. Lett. 19 (2017) 5344-5347;
      (d) K. Orito, A. Horibata, T. Nakamura, et al., J. Am. Chem. Soc. 126 (2004) 14342-14343;
      (e) A. Lazareva, O. Daugulis, Org. Lett. 8(2006) 5211-5213;
      (f) B. Haffemayer, M. Gulias, M.J. Gaunt, Chem. Sci. 2(2011) 312-315;
      (g) M. Miura, C.G. Feng, S. Ma, J.Q. Yu, Org. Lett. 15 (2013) 5258-5261;
      (h) A. Mancinelli, C. Alamillo, J. Albert, et al., Organometallics 36 (2017) 911-919;
      (i) C.H. Zhang, Y.Z. Ding, Y.Z. Gao, S.D. Li, G. Li, Org. Lett. 20 (2018) 2595-2598.

    8. [8]

      (a) A. McNally, B. Haffemayer, B.S.L. Collins, M.J. Gaunt, Nature 510 (2014) 129-133;
      (b) J. Calleja, D. Pla, T.W. Gorman, et al., Nat. Chem. 7(2015) 1009-1016;
      (c) C. He, M.J. Gaunt, Angew. Chem. Int. Ed. 54 (2015) 15840-15844;
      (d) D. Willcox, B.G.N. Chappell, K.F. Hogg, et al., Science 354 (2016) 851.

    9. [9]

      A.D. Ryabov, Chem. Rev. 90 (1990) 403-424.  doi: 10.1021/cr00100a004

    10. [10]

      A.P. Smalley, M.J. Gaunt, J. Am. Chem. Soc. 137 (2015) 10632-10641.  doi: 10.1021/jacs.5b05529

    11. [11]

      K. Chen, D. Wang, Z.W. Li, et al., Org. Chem. Front. 4(2017) 2097-2101.  doi: 10.1039/C7QO00432J

    12. [12]

      Y. Xu, M.C. Young, C. Wang, D.M. Magness, G. Dong, Angew. Chem. Int. Ed. 55 (2016) 9084-9087.  doi: 10.1002/anie.201604268

    13. [13]

      (a) Y. Wu, Y.Q. Chen, T. Liu, M.D. Eastgate, J.Q. Yu, J. Am. Chem. Soc. 138 (2016) 14554-14557;
      (b) Y.Q. Chen, Z. Wang, Y. Wu, et al., J. Am. Chem. Soc.140 (2018) 17884-17894.

    14. [14]

      Y. Liu, H. Ge, Nat. Chem. 9(2017) 26-32.  doi: 10.1038/nchem.2606

    15. [15]

      A. Yada, W. Liao, Y. Sato, M. Murakami, Angew. Chem. Int. Ed. 56 (2017) 1073-1076.  doi: 10.1002/anie.201610666

    16. [16]

      M. Kapoor, D. Liu, M.C. Young, J. Am. Chem. Soc. 140 (2018) 6818-6822.  doi: 10.1021/jacs.8b05061

    17. [17]

      H. Lin, C. Wang, T.D. Bannister, T.M. Kamenecka, Chem. -Eur. J. 24 (2018) 9535-9541.  doi: 10.1002/chem.201802465

    18. [18]

      S. St John-Campbell, A.K. Ou, J.A. Bull, Chem. -Eur. J. 24 (2018) 17838-17843.  doi: 10.1002/chem.201804515

    19. [19]

      J.T. Ye, I. Kalvet, F. Schoenebeck, T. Rovis, Nat. Chem. 10 (2018) 1037-1041.  doi: 10.1038/s41557-018-0085-9

    20. [20]

      X.X. Hu, J.B. Liu, L.L. Wang, et al., Org. Chem. Front. 5(2018) 1670-1678.  doi: 10.1039/C8QO00094H

    21. [21]

      P.K. Pramanick, Z. Zhou, Z.L. Hou, B. Yao, J. Org. Chem. 84 (2019) 5684-5694.  doi: 10.1021/acs.joc.9b00605

    22. [22]

      H. Lin, X. Pan, A.L. Barsamian, T.M. Kamenecka, T.D. Bannister, ACS Catal. 9(2019) 4887-4891.  doi: 10.1021/acscatal.8b04927

    23. [23]

      (a) S. Guin, P. Dolui, X. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 5633-5638;
      (b) B.B. Zhan, Y. Li, J.W. Xu, et al., Angew. Chem. Int. Ed. 57 (2018) 5858-5862;
      (c) J.W. Xu, Z.Z. Zhang, W.H. Rao, B.F. Shi, J. Am. Chem. Soc. 138 (2016) 10750-10753.

  • 加载中
    1. [1]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    2. [2]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    3. [3]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    4. [4]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    5. [5]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    6. [6]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    7. [7]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    8. [8]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    9. [9]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    10. [10]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    13. [13]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    14. [14]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    15. [15]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    16. [16]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    17. [17]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    18. [18]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    19. [19]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    20. [20]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

Metrics
  • PDF Downloads(12)
  • Abstract views(1244)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return