Citation: Tan Tong-De, Zhu Xin-Qi, Jia Mei, Lin Yongjia, Cheng Jun, Xia Yuanzhi, Ye Long-Wu. Stereospecific access to bridged [n.2.1] skeletons through gold-catalyzed tandem reaction of indolyl homopropargyl amides[J]. Chinese Chemical Letters, ;2020, 31(5): 1309-1312. doi: 10.1016/j.cclet.2019.10.019 shu

Stereospecific access to bridged [n.2.1] skeletons through gold-catalyzed tandem reaction of indolyl homopropargyl amides

    *Corresponding author at: iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
    ** Corresponding authors.
    E-mail addresses: chengjun@xmu.edu.cn (J. Cheng), xyz@wzu.edu.cn (Y. Xia), longwuye@xmu.edu.cn (L.-W. Ye).
  • Received Date: 3 September 2019
    Revised Date: 8 October 2019
    Accepted Date: 18 October 2019
    Available Online: 2 November 2019

Figures(8)

  • An efficient gold-catalyzed anti-Markovnikov cycloisomerization-initiated tandem reaction of Bocprotected indole tethered homopropargyl amides has been achieved. This method delivers a wide range of valuable bridged aza-[n.2.1] skeletons (n=3-7) at room temperature with high diastereoselectivity and enantioselectivity by a chirality-transfer strategy. Moreover, the gold-catalyzed tandem reaction of homopropargyl alcohol is also achieved to produce the bridged oxa-[3.2.1] skeleton.
  • 加载中
    1. [1]

      (a) E. Aguilar, J. Santamaría, Org. Chem. Front. 6 (2019) 1513-1540;
      (b) L. Li, T.D. Tan, Y.Q. Zhang, X. Liu, L.W. Ye, Org. Biomol. Chem.15 (2017) 8483-8492;
      (c) W. Zi, F.D. Toste, Chem. Soc. Rev. 45 (2016) 4567-4589;
      (d) A.M. Asiri, A.S.K. Hashmi, Chem. Soc. Rev. 45 (2016) 4471-4503;
      (e) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev. 45 (2016) 4448-4458;
      (f) D. Pflästerer, A.S.K. Hashmi, Chem. Soc. Rev. 45 (2016) 1331-1367;
      (g) D.B. Huple, S. Ghorpade, R. Liu, Adv. Synth. Catal. 358 (2016) 1348-1367;
      (h) L. Liu, J. Zhang, Chem. Soc. Rev. 45 (2016) 506-516;
      (i) F. Pan, C. Shu, L.W. Ye, Org. Biomol. Chem. 14 (2016) 9456-9465;
      (j) D. Qian, J. Zhang, Chem. Soc. Rev. 44 (2015) 677-698;
      (k) R. Dorel, A.M. Echavarren, Chem. Rev. 115 (2015) 9028-9072;
      (l) Y. Yamamoto, Chem. Soc. Rev. 43 (2014) 1575-1600;
      (m) H.S. Yeom, S. Shin, Acc. Chem. Res. 47 (2014) 966-977;
      (n) L. Fensterbank, M. Malacria, Acc. Chem. Res. 47 (2014) 953-965;
      (o) C. Obradors, A.M. Echavarren, Acc. Chem. Res. 47 (2014) 902-912;
      (p) Y.M. Wang, A.D. Lackner, F.D. Toste, Acc. Chem. Res. 47 (2014) 889-901;
      (q) L. Zhang, Acc. Chem. Res. 47 (2014) 877-888;
      (r) A.S.K. Hashmi, Acc. Chem. Res. 47 (2014) 864-876.

    2. [2]

      (a) A. Gimeno, A.B. Cuenca, S. Suárez-Pantiga, et al., Chem. -Eur. J. 20 (2014) 683-688;
      (b) R.S. Menon, A.D. Findlay, A.C. Bissember, M.G. Banwell, J. Org. Chem. 74 (2009) 8901-8903;
      (c) V. Mamane, P. Hannen, A. Fürstner, Chem. -Eur. J. 10 (2004) 4556-4575;
      (d) D.J. Ye, J.F. Wang, X. Zhang, et al., Green Chem. 11 (2009) 1201-1208;
      (e) I.V. Seregin, V. Gevorgyan, J. Am. Chem. Soc. 128 (2006) 12050-12051.

    3. [3]

      M. Pernpointner, A.S.K. Hashmi, J. Chem. Theory Comput. 5 (2009) 2717-2725.

    4. [4]

      (a) C. Shu, M.Q. Liu, Y.Z. Sun, L.W. Ye, Org. Lett. 14 (2012) 4958-4961;
      (b) C. Shu, M.Q. Liu, S.S. Wang, L. Li, L.W. Ye, J. Org. Chem. 78 (2013) 3292-3299;
      (c) Y.F. Yu, C. Shu, B. Zhou, et al., Chem. Commun. (Camb.) 51 (2015) 2126-2129;
      (d) C. Shu, L. Li, C.H. Shen, et al., Chem. -Eur. J. 22 (2016) 2282-2290;
      (e) Y.F. Yu, C. Shu, T.D. Tan, et al., Org. Lett. 18 (2016) 5178-5181;
      (f) T.D. Tan, Y.B. Chen, M.Y. Yang, et al., Chem. Commun. (Camb.) 5 (2019) 9923-9926;
      (g) T.D. Tan, X.Q. Zhu, H.Z. Bu, et al., Angew. Chem. Int. Ed. 58 (2019) 9632-9639;
      (h) C. Shu, L. Li, T.D. Tan, D.Q. Yuan, L.W. Ye, Sci. Bull. (Beijing) 62 (2017) 352-357.

    5. [5]

      R. Ali, G. Singh, S. Singh, R.S. Ampapathi, W. Haq, Org. Lett. 18 (2016) 2848-2851.

    6. [6]

      (a) L. Zhang, Y. Wang, Z.J. Yao, S. Wang, Z.X. Yu, J. Am. Chem. Soc. 137 (2015) 13290-13300;
      (b) D. Pflästerer, S. Schumacher, M. Rudolph, A.S.K. Hashmi, Chem. -Eur. J. 21 (2015) 11585-11589;
      (c) D. Pflästerer, E. Rettenmeier, S. Schneider, et al., Chem. -Eur. J. 20 (2014) 6752-6755;
      (d) Z. Dong, C.H. Liu, Y. Wang, M. Lin, Z.X. Yu, Angew. Chem. Int. Ed. 52 (2013) 14157-14161;
      (e) L. Huang, H.B. Yang, D.H. Zhang, et al., Angew. Chem. Int. Ed. 52 (2013) 6767-6771;
      (f) L. Liu, L. Zhang, Angew. Chem. Int. Ed. 51 (2012) 7301-7304;
      (g) C. Ferrer, C.H.M. Amijs, A.M. Echavarren, Chem. -Eur. J. 13 (2007) 1358-1373.

    7. [7]

      N. Gouault, M. Le Roch, C. Cornée, M. David, P. Uriac, J. Org. Chem. 74 (2009) 5614-5617.

    8. [8]

      (a) S. Tong, C. Piemontesi, Q. Wang, M.X. Wang, J. Zhu, Angew. Chem. Int. Ed. 56 (2017) 7958-7962;
      (b) T. Arto, F.J. Fañanás, F. Rodríguez, Angew. Chem.Int. Ed. 55 (2016) 7218-7221;
      (c) S. Hosseyni, L. Wojtas, M. Li, X. Shi, J. Am. Chem. Soc.138 (2016) 3994-3997;
      (d) K. Liu, C. Zhu, J. Min, et al., Angew. Chem. Int. Ed. 54 (2015) 12962-12967;
      (e) F.S. Zhang, Q. Lai, X.D. Shi, Z.G. Song, Chin. Chem. Lett. 30 (2019) 392-394.

    9. [9]

      (a) Y. Xu, Q. Sun, T.D. Tan, et al., Angew. Chem. Int. Ed. 58 (2019) 16252-16259;
      (b) B. Zhou, Y.Q. Zhang, K. Zhang, et al., Nat. Commun. 10 (2019) 3234;
      (c) L. Li, X.Q. Zhu, Y.Q. Zhang, et al., Chem. Sci. 10 (2019) 3123-3129;
      (d) X.Q. Zhu, Q. Sun, Z.X. Zhang, et al., Chem. Commun. (Camb.) 54 (2018) 7435-7438;
      (e) X.Q. Zhu, H. Yuan, Q. Sun, et al., Green Chem. 20 (2018) 4287-4291;
      (f) W.B. Shen, B. Zhou, Z.X. Zhang, et al., Org. Chem. Front. 5 (2018) 2468-2472;
      (g) W.B. Shen, Q. Sun, L. Li, et al., Nat. Commun. 8 (2017) 1748;
      (h) B. Zhou, L. Li, X.Q. Zhu, et al., Angew. Chem. Int. Ed. 56 (2017) 4015-4019;
      (i) W.B. Shen, X.Y. Xiao, Q. Sun, et al., Angew. Chem. Int. Ed. 56 (2017) 605-609;
      (j) B. Zhou, Y.Q. Zhang, X. Liu, L.W. Ye, Sci. Bull. (Beijing) 62 (2017) 1201-1206;
      (k) C. Shu, Y.H. Wang, B. Zhou, et al., J. Am. Chem. Soc. 137 (2015) 9567-9570;
      (l) L. Li, B. Zhou, Y.H. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 8245-8249;
      (m) A.H. Zhou, Q. He, C. Shu, et al., Chem. Sci. 6 (2015) 1265-1271.

    10. [10]

      M.J. James, R.E. Clubley, K.Y. Palate, et al., Org. Lett. 17 (2015) 4372-4375.

    11. [11]

      (a) D. Pflästerer, M. Rudolph, B.F. Yates, A. Ariafard, A.S.K. Hashmi, Adv. Synth. Catal. 359 (2017) 866-874;
      (b) T. Jime'nez, J. Carreras, J. Ceccon, A.M. Echavarren, Org. Lett.18 (2016) 1410-1413;
      (c) J.M. Yang, P.H. Li, Y. Wei, X.Y. Tang, M. Shi, Chem. Commun. (Camb.) 52 (2016) 346-349;
      (d) Y. Hu, Y. Li, S. Zhang, et al., Org. Lett. 17 (2015) 4018-4021;
      (e) T. Iwai, H. Okochi, H. Ito, M. Sawamura, Angew. Chem. Int. Ed. 52 (2013) 4239-4242;
      (f) D. Pflästerer, P. Dolbundalchok, S. Rafique, et al., Adv. Synth. Catal. 355 (2013) 1383-1393;
      (g) H. Ito, A. Harada, H. Ohmiya, M. Sawamura, Adv. Synth. Catal. 355 (2013) 647-652;
      (h) B. Bolte, F. Gagosz, J. Am. Chem. Soc. 133 (2011) 7696-7699;
      (i) I.D.G. Watson, S. Ritter, F.D. Toste, J. Am. Chem. Soc. 131 (2009) 2056-2057.

    12. [12]

      C. Zhu, X. Zhang, X. Lian, S. Ma, Angew. Chem. Int. Ed. 51 (2012) 7817-7820.

  • 加载中
    1. [1]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    2. [2]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    5. [5]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    6. [6]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    7. [7]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    8. [8]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    9. [9]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    10. [10]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    11. [11]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    12. [12]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    13. [13]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    14. [14]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    15. [15]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    16. [16]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    17. [17]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    18. [18]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    19. [19]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    20. [20]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

Metrics
  • PDF Downloads(4)
  • Abstract views(649)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return