Citation: Cai Yan, Wang Yang, Wang Chenwei, Long Renhua, Cao Leyu, Chen Yanmei, Yao Yong. Hierarchical self-assembly of 3D amphiphilic discrete organoplatinum (II) metallacage in water[J]. Chinese Chemical Letters, ;2020, 31(3): 689-692. doi: 10.1016/j.cclet.2019.08.036 shu

Hierarchical self-assembly of 3D amphiphilic discrete organoplatinum (II) metallacage in water

    * Corresponding author.
    E-mail address: yaoyong1986@ntu.edu.cn (Y. Yao).
  • Received Date: 9 June 2019
    Accepted Date: 22 August 2019
    Available Online: 23 August 2019

Figures(7)

  • Here we described the design and synthesis of a discrete 3D amphiphilic metallacage 4, in which the tetragonal prismatic frameworks act as the hydrophobic cores and the poly(ethylene glycol) (PEG) chains as the hydrophilic tails. The structure of 4 was characterized by 1H NMR, 31P NMR and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). Notably, 4 with its long PEG tails was subsequently ordered into micelles at a low concentration (1.20 ×10-6 mol/L) in water. As the concentration and cultivation time increased, the micelles can further self-assembly into nanofibers and nanoribbons. Considering the dynamic property of the coordination bond, these structures show reversible transformation under external stimuli.
  • 加载中
    1. [1]

      (a) J.W. Bryson, S.F. Betz, H.S. Lu, et al., Science 270 (1995) 935-941;
      (b) Y. Cao, Y. Duan, L. Han, S. Che, Chem. Commun. 53 (2017) 5641-5644;
      (c) S.M.F. Vilela, P. Salcedo-Abraira, L. Micheron, et al., Chem. Commun. 54 (2018) 13088-13091;
      (d) C.W. Chu, B.J. Ravoo, Chem. Commun. 53 (2017) 12450-12453;
      (e) W. Lin, T.Y. Cen, S.P. Wang, et al., Chin. Chem. Lett. 29 (2018) 1372-1374;
      (f) S.P. Wang, W. Lin, X. Wang, et al., Nat. Commun. 10 (2019) 1399.

    2. [2]

      (a) X. Yan, S. Li, T.R. Cook, et al., J. Am. Chem. Soc. 135 (2013) 14036-14039;
      (b) H.J. Kim, T. Kim, M. Lee, Acc. Chem. Res. 44 (2011) 72-82;
      (c) Y. Liu, C. Yu, H. Jin, et al., J. Am. Chem. Soc. 135 (2013) 4765-4770;
      (d) S. Sun, M. Geng, L. Huang, et al., Chem. Commun. 54 (2018) 13006-13009;
      (e) A. Sakaguchi, K. Higashiguchi, K. Matsuda, Chem. Commun. 54 (2018) 4298-4301;
      (f) M. He, L. Chen, B. Jiang, et al., Chin. Chem. Lett. 30 (2019) 131-134;
      (g) J. Chen, Y. Wang, C. Wang, et al., Chem. Commun. 55 (2019) 6817-6826.

    3. [3]

      (a) Z.Q. Cao, Y.C. Wang, A.H. Zou, et al., Chem. Commun. 53 (2017) 8683-8686;
      (b) K. Jie, Y. Zhou, Y. Yao, F. Huang, Chem. Soc. Rev. 44 (2015) 3568-3587;
      (c) I. Pisagatti, L. Barbera, G. Gattuso, et al., New J. Chem. 43 (2019) 7628-7635;
      (d) P.Zhang, E.Paszkiewicz, Q.Wang, etal., Chem.Commun.53 (2017)10528-10531;
      (e) Y. Zhou, K. Jie, F. Huang, Chem. Commun. 54 (2018) 12856-12859;
      (f) Y. Chen, S. Sun, D. Lu, et al., Chin. Chem. Lett. 30 (2019) 37-43;
      (g) Y. Yao, X. Wei, J. Chen, et al., Supramol. Chem. 30 (2018) 610-619;
      (h) T. Xiao, W. Zhong, L. Zhou, et al., Chin. Chem. Lett. 30 (2019) 31-36.

    4. [4]

      (a) M. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 38 (2005) 369-378;
      (b) C.G. Oliveri, P.A. Ulmann, M.J. Wiester, C.A. Mirkin, Acc. Chem. Res. 41 (2008) 1618-1629;
      (c) B.H. Northrop, Y.R. Zheng, K.W. Chi, P.J. Stang, Acc. Chem. Res. 42 (2009) 1554-1563;
      (d) S. De, K. Mahata, M. Schmittel, Chem. Soc. Rev. 39 (2010) 1555-1575;
      (e) N.N. Adarsh, P. Dastidar, Chem. Soc. Rev. 41 (2012) 3039-3060;
      (f) L.E. Kreno, K. Leong, O.K. Farha, et al., Chem. Rev. 112 (2012) 1105-1125;
      (g) T.R. Cook, Y.R. Zheng, P.J. Stang, Chem. Rev. 113 (2013) 734-777;
      (h) T.R. Cook, P.J. Stang, Chem. Rev. 115 (2015) 7001-7045;
      (i) C.J. Brown, F.D. Toste, R.G. Bergman, K.N. Raymond, Chem. Rev. 115 (2015) 3012-3035.

    5. [5]

      (a) Q.F. Sun, S. Sato, M. Fujita, Nat. Chem. 4 (2012) 330-333;
      (b) J. Fan, M.L. Saha, B. Song, H. Schonherr, M. Schmittel, J. Am. Chem. Soc. 134 (2012) 150-153;
      (c) A. Sautter, B.K. Kaletas, D.G. Schmid, et al., J. Am. Chem. Soc. 127 (2005) 6719-6729.

    6. [6]

      (a) Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 3 (2011) 349-358;
      (b) X. Yan, S. Li, J.B. Pollock, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 15585-15590;
      (c) X. Yan, B. Jiang, T.R. Cook, et al., J. Am. Chem. Soc.135 (2013) 16813-16816;
      (d) Z.Y. Li, Y. Zhang, C.W. Zhang, et al., J. Am. Chem. Soc.136 (2014) 8577-8589;
      (e) X. Yan, J.F. Xu, T.R. Cook, et al., Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 8717-8722;
      (f) M. Yamashina, M.M. Sartin, Y. Sei, et al., J. Am. Chem. Soc. 137 (2015) 9266-9269;
      (g) B. Roy, A.K. Ghosh, S. Srivastava, P. D'Silva, P.S. Mukherjee, J. Am. Chem. Soc. 137 (2015) 11916-11919.

    7. [7]

      (a) Y. Wang, C. Wang, R. Long, et al., Chem. Commun. 55 (2019) 5167-5170;
      (b) Y. Yao, R. Zhao, Y. Shi, et al., Chem. Commun. 54 (2018) 8068-8071.

    8. [8]

      Y. Shi, I. Sanchez-Molina, C. Cao, et al., Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 9390-9395.  doi: 10.1073/pnas.1408905111

    9. [9]

      Y. Yao, M. Xue, J. Chen, et al., J. Am. Chem. Soc. 134 (2012) 15712-15715.  doi: 10.1021/ja3076617

    10. [10]

      (a) G. Yu, X. Zhou, Z. Zhang, et al., J. Am. Chem. Soc. 134 (2012) 19489-19497;
      (b) K. Wang, D.S. Guo, X. Wang, Y. Liu, ACS Nano 5 (2011) 2880-2894.

    11. [11]

      C. Wang, S. Yin, S. Chen, et al., Angew. Chem. Int. Ed. 47 (2008) 9049-9052.  doi: 10.1002/anie.200803361

    12. [12]

      (a) L.J. Chen, G.Z. Zhao, B. Jiang, et al., J. Am. Chem. Soc.136 (2014) 5993-6001;
      (b) S. Li, J. Huang, T.R. Cook, et al., J. Am. Chem. Soc. 135 (2013) 2084-2087;
      (c) S. Li, J. Huang, F. Zhou, et al., J. Am. Chem. Soc. 136 (2014) 5908-5911.

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    3. [3]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    4. [4]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    5. [5]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    6. [6]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    7. [7]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    8. [8]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    9. [9]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    14. [14]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    15. [15]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    16. [16]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    17. [17]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    18. [18]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

Metrics
  • PDF Downloads(9)
  • Abstract views(872)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return