Citation: Jin Chaochao, Xu Kun, Fan Xiao, Liu Changyao, Tan Jiajing. Direct benzylic functionalization of pyridines: Palladiumcatalyzed mono-α-arylation of α-(2-pyridinyl)acetates with heteroaryl halides[J]. Chinese Chemical Letters, ;2020, 31(1): 91-94. doi: 10.1016/j.cclet.2019.06.028 shu

Direct benzylic functionalization of pyridines: Palladiumcatalyzed mono-α-arylation of α-(2-pyridinyl)acetates with heteroaryl halides

    * Corresponding author.
    E-mail address: tanjj@mail.buct.edu.cn (J. Tan).
  • Received Date: 9 April 2019
    Revised Date: 10 June 2019
    Accepted Date: 14 June 2019
    Available Online: 17 January 2019

Figures(8)

  • Herein, we report a Pd-catalyzed mono-α-arylation reaction for pyridine benzylic functionalization. This approach serves as an efficient alternative to synthesize di-heteroaryl acetates in good yields and selectivities. Moreover, the method is applicable to heteroaryl substrate combinations, and exhibits great functional group tolerance. A streamlined protocol also enables the rapid synthesis of diheteroaryl ketones. The synthetic value was also demonstrated by scale-up experiments
  • 加载中
    1. [1]

      (a) R.E. Dolle, B.L. Bourdonnec, K. Worm, et al., Comb. Chem. 12 (2010) 765-806;
      (b) A. Facchetti, Chem. Mater. 23 (2011) 733-758;
      (c) L.M. Blair, J. Sperry, J. Nat. Prod. 76 (2013) 794-812;
      (d) E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257-10274;
      (e) U.H.F. Bunz, Acc. Chem. Res. 48 (2015) 1676-1686;
      (f) R.K. Alan, A.R. Christopher, F.V.S. Eric, et al., Comprehensive Heterocyclic Chemistry Ⅲ, Elsevier, Oxford, 2008;
      (g) K.C. Majumdar, S.K. Chattopadhyay, Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim, 2011.

    2. [2]

      (a) J. Alvarez-Builla, J.J. Vaquero, J. Barluenga, Modern Heterocyclic Chemistry, Wiley-VCH, Weinheim, 2011;
      (b) M. Baumann, I.R. Baxendale, Beilstein J. Org. Chem. (9) (2013) 2265-2319;
      (c) M.D. Hill, Chem. Eur. J. 16 (2010) 12052-12062;
      (d) J.S. Carey, D. Laffan, C. Thomson, et al., Org. Biomol. Chem. 4 (2006) 2337-2347;
      (e) M. Schlosser, F. Mongin, Chem. Soc. Rev. 36 (2007) 1161-1172;
      (f) L. Ackermann, H.K. Potukuchi, A.R. Kapdi, et al., Chem. Eur. J. 16 (2010) 3300-3303;
      (g) Y.S. Kumar, F.-R.N. Khan, Chin. Chem. Lett. 28 (2017) 1607-1612;
      (h) A.P. Krinochkin, D.S. Kopchuk, N.V. Chepchugov, et al., Chin. Chem. Lett. 28 (2017) 1099-1103.

    3. [3]

      R.A. Aycock, D.B. Vogt, N.T. Jui, Chem. Sci. 8 (2017) 7998-8003.  doi: 10.1039/C7SC03612D

    4. [4]

      (a) A. Kotschy, G. Timári, Heterocycles From Transition Metal Catalysis, Springer, Dordrecht, 2005;
      (b) S. Schröter, C. Stock, T. Bach, Tetrahedron 61 (2005) 2245-2267;
      (c) M. Beller, C. Bolm, Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd ed., Wiley-VCH, Weinheim, 2004.

    5. [5]

      (a) H.-Y. Lin, B.B. Snider, J. Org. Chem. 77 (2012) 4832-4836;
      (b) J.A. Lowe, D.L. Hageman, S.E. Drozda, et al., J. Med. Chem. 37 (1994) 3789-3811;
      (c) J.J. Mousseau, A. Larivée, A.B. Charette, Org. Lett. 10 (2008) 1641-1643;
      (d) S. Duez, A.K. Steib, S.M. Manolikakes, et al., Angew. Chem. Int. Ed. 50 (2011) 7686-7690;
      (e) K.P. Bogeso, A.V. Christensen, J. Hyttel, et al., J. Med. Chem. 28 (1985) 1817-1828.

    6. [6]

      (a) R.B. Woodward, E.C. Kornfeld, Org. Synth. 29 (1949) 44;
      (b) W.G. Kofron, L.M. Baclawski, Org. Synth. 52 (1972) 75;
      (c) R. Zhu, G. Cheng, C. Jia, et al., J. Org. Chem. 81 (2016) 7539-7544.

    7. [7]

      (a) A.T. Londregan, S. Jennings, L. Wei, Org. Lett. 12 (2010) 5254-5257;
      (b) A.T. Londregan, S. Jennings, L. Wei, Org. Lett. 13 (2011) 1840-1843.

    8. [8]

      (a) P.S. Fier, J. Am. Chem. Soc. 139 (2017) 9499-9502;
      (b) D.D. Zhai, X.Y. Zhang, Y.F. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 1650-1653 and references therein.

    9. [9]

      (a) J.J. Tan, Y. Chen, H. Li, et al., J. Org. Chem. 79 (2014) 8871-8876;
      (b) H.Q. Wang, W.T. Xu, Z.Q. Wang, et al., J. Org. Chem. 80 (2015) 2431-2435;
      (c) L. Liu, C. Tan, R. Fan, et al., Org. Biomol. Chem. 17 (2019) 252-256.

    10. [10]

      (a) S. Lee, N.A. Beare, J.F. Hartwig, J. Am. Chem. Soc. 123 (2001) 8410-8411;
      (b) M. Jorgensen, S. Lee, X. Liu, et al., J. Am. Chem. Soc. 124 (2002) 12557-12565;
      (c) T. Hama, X. Liu, D.A. Culkin, et al., J. Am. Chem. Soc.125 (2003) 11176-11177;
      (d) X. Liu, J.F. Hartwig, J. Am. Chem. Soc. 126 (2004) 5182-5191;
      (e) T. Hama, J.F. Hartwig, Org. Lett. 10 (2008) 1545-1548;
      (f) M.R. Biscoe, S.L. Buchwald, Org. Lett. 11 (2009) 1773-1775;
      (g) T. Hama, D.A. Culkin, J.F. Hartwig, J. Am. Chem. Soc.128 (2006) 4976-4985;
      (h) B. Zheng, T. Jia, P.J. Walsh, Org. Lett. 15 (2013) 4190-4193;
      (i) R. Martin, S.L. Buchwald, Angew. Chem. Int. Ed. 46 (2007) 7236-7239;
      (j) G.D. Vo, J.F. Hartwig, Angew. Chem. Int. Ed. 47 (2008) 2127-2130;
      (k) R. Martin, S.L. Buchwald, Org. Lett. 10 (2008) 4561-4564;
      (l) D.A. Culkin, J.F. Hartwig, Acc. Chem. Res. 36 (2003) 234-245;
      (m) F. Bellina, R. Rossi, Chem. Rev. 110 (2010) 3850;
      (n) C.C.C. Johansson, T.J. Colacot, Angew. Chem. Int. Ed. 49 (2010) 676-707;
      (o) Z. Liu, M. Li, B. Wang, et al., Org. Chem. Front. 5 (2018) 1870-1876;
      (p) G. Gao, Y. Fu, M. Li, et al., Adv. Synth. Catal. 359 (2017) 2890-2894;
      (q) K. Ablajan, G.B. Panetti, X. Yang, et al., Adv. Synth. Catal. 359 (2017) 1927-1932;
      (r) G. Saini, P. Kumar, G.S. Kumar, et al., Org. Lett. 20 (2018) 441-444;
      (s) I. Astarloa, R. SanMartin, M.T. Herrero, et al., Adv. Synth. Catal. 360 (2018) 1711-1718;
      (t) D.J. Leonard, J.W. Ward, J. Clayden, Nature 562 (2018) 105-109.

    11. [11]

      (a) Á. Molnár, Palladium-Catalyzed Coupling Reactions-Practical Aspects and Future Developments, Wiley-WCH, Weinheim, 2013;
      (b) M.L. Crawley, B.M. Trost, Applications of Transition Metal Catalysis in Drug Discovery and Development, Wiley, New York, 2012;
      (c) C. Torborg, M. Beller, Adv. Synth. Catal. 351 (2009) 3027-3043.

    12. [12]

      (a) M.A. Oberli, S.L. Buchwald, Org. Lett. 14 (2012) 4606-4609;
      (b) P.E. Maligres, J. Li, S.W. Krska, et al., Angew. Chem. Int. Ed. 51 (2012) 9071-9074;
      (c) J.C. Tellis, D.N. Primer, G.A. Molander, Science 345 (2014) 433-436.

    13. [13]

      (a) X. Huang, K.W. Anderson, D. Zim, J. Am. Chem. Soc. 125 (2003) 6653-6655;
      (b) N.C. Bruno, M.T. Tudge, S.L. Buchwald, Chem. Sci. 4 (2013) 916-920;
      (c) P. Novak, R. Martin, Curr. Org. Chem. 15 (2011) 3233-3262.

    14. [14]

      (a) C.J. Douglas, L.E. Overman, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 5363-5367;
      (b) J. Christoffers, A. Baro, Adv. Synth. Catal. 347 (2005) 1473-1482;
      (c) K.W. Quasdorf, L.E. Overman, Nature 516 (2014) 181-191.

    15. [15]

      (a) J. Gu, X. Wang, W. Xue, Org. Chem. Front. 2 (2015) 1411-1421;
      (b) X. Wang, S.Z. Stankovich, R.A. Widenhoefer, Organometallics 21 (2002) 901-905.

    16. [16]

      (a) W.A. Moradi, S.L. Buchwald, J. Am. Chem. Soc. 123 (2001) 7996-8002;
      (b) T. Hama, J.F. Hartwig, Org. Lett. 10 (2008) 1549-1552;
      (c) F. Churruca, R. SanMartin, R. Tellitu, Tetrahedron Lett. 44 (2003) 5925-5929;
      (d) K.B. Urkalan, M.S. Sigman, Angew. Chem. Int. Ed. 48 (2009) 3146-3149;
      (e) F. Churruca, R. SanMartin, M. Carril, Tetrahedron 60 (2004) 2393-2408.

    17. [17]

      G. Favaro, F. Ortica, A. Romani, J. Photochem. Photobiol. C 16 (2013) 22-45.  doi: 10.1016/j.jphotochemrev.2013.03.001

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    4. [4]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    5. [5]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    6. [6]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    7. [7]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    8. [8]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    9. [9]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    10. [10]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    11. [11]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    12. [12]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    13. [13]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    14. [14]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    15. [15]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    16. [16]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    17. [17]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    18. [18]

      Kai AnQinglong QiaoLoveleshSyed Ali Abbas AbediXiaogang LiuZhaochao Xu . "Superimposed" spectral characteristics of fluorophores arising from cross-conjugation hybridization. Chinese Chemical Letters, 2025, 36(1): 109786-. doi: 10.1016/j.cclet.2024.109786

    19. [19]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    20. [20]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

Metrics
  • PDF Downloads(10)
  • Abstract views(818)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return