Versatile metal graphitic nanocapsules for SERS bioanalysis
-
* Corresponding author.
E-mail address: zhuochen@hnu.edu.cn (Z. Chen)
Citation: Li Shengkai, Xu Jiamei, Wang Shen, Xia Xin, Chen Long, Chen Zhuo. Versatile metal graphitic nanocapsules for SERS bioanalysis[J]. Chinese Chemical Letters, ;2019, 30(9): 1581-1592. doi: 10.1016/j.cclet.2019.05.049
Y.W. Wang, Y.L. Liu, J.Q. Xu, et al., Anal. Chem. 90(2018) 5977-5981.
doi: 10.1021/acs.analchem.8b01396
L. Li, Q. Li, Z. Liao, et al., Anal. Chem. 90(2018) 9621-9628.
doi: 10.1021/acs.analchem.8b02572
S.K. Li, A.Y. Chen, X.X. Niu, et al., Chem. Commun. 53(2017) 9624-9627.
doi: 10.1039/C7CC04747A
J. Yan, M.C. Estévez, J.E. Smith, et al., Nano Today 2(2007) 44-50.
I. Lovchinsky, A.O. Sushkov, E. Urbach, et al., Science 351(2016) 836-841.
doi: 10.1126/science.aad8022
C. Zhang, N.E. Manicke, Anal. Chem. 87(2015) 6212-6219.
doi: 10.1021/acs.analchem.5b00884
Y. Lv, M. Liu, Y. Zhang, et al., ACS Nano 12(2018) 1350-1358.
doi: 10.1021/acsnano.7b07716
X. Zhen, J. Zhang, J. Huang, et al., Angew. Chem. Int. Ed. 57(2018) 7804-7808.
doi: 10.1002/anie.201803321
C.V. Raman, K.S. Krishnan, Nature 121(1928) 501-502.
C.V. Raman, Indian J. Phys. 2(1928) 387-398.
K. Kneipp, H. Kneipp, I. Itzkan, et al., Chem. Rev. 99(1999) 2957-2976.
doi: 10.1021/cr980133r
L.M. Malard, M.A.A. Pimenta, G. Dresselhaus, et al., Phys. Rep. 473(2009) 51-87.
doi: 10.1016/j.physrep.2009.02.003
J. Yang, L. Xia, Z. Lin, et al., Chin. Chem. Lett. 30(2019) 638-642.
doi: 10.1016/j.cclet.2018.08.004
S. Pang, T. Yang, L. He, TrAC-Trend Anal. Chem. 85(2016) 73-82.
doi: 10.1016/j.trac.2016.06.017
X. Yin, H. Dong, S. Wang, et al., Chin. Chem. Lett. 30(2019) 179-182.
doi: 10.1016/j.cclet.2018.06.013
J.P. Camden, J.A. Dieringer, Y. Wang, et al., J. Am. Chem. Soc. 130(2008) 12616-12617.
doi: 10.1021/ja8051427
M.M. Joseph, N. Narayanan, J.B. Nair, et al., Biomaterials 181(2018) 140-181.
doi: 10.1016/j.biomaterials.2018.07.045
Z.Q. Tian, B. Ren, J.F. Li, et al., Chem. Commun. (2007) 3514-3534.
M. Fleischmann, P.J. Hendra, A, J. Chem. Phys. Lett. 26(1974) 163-166.
doi: 10.1016/0009-2614(74)85388-1
K. Kneipp, Y. Wang, H. Kneipp, et al., Phys. Rev. Lett. 78(1997) 1667-1670.
doi: 10.1103/PhysRevLett.78.1667
K. Kneipp, H. Kneipp, V.B. Kartha, et al., Phys. Rev. E 57(1998) R6281.
doi: 10.1103/PhysRevE.57.R6281
J. Kneipp, H. Kneipp, K. Kneipp, Chem. Soc. Rev. 37(2008) 1052-1060.
doi: 10.1039/b708459p
D.K. Lim, K.S. Jeon, H.M. Kim, et al., Nat. Mater. 9(2010) 60-67.
doi: 10.1038/nmat2596
D. Cialla-May, X.S. Zheng, K. Weber, et al., Chem. Soc. Rev. 46(2017) 3945-3961.
doi: 10.1039/C7CS00172J
S. Nie, S.R. Emory, Science 275(1997) 1102-1106.
doi: 10.1126/science.275.5303.1102
M.S. Strozyk, D.J. de Aberasturi, J.V. Gregory, et al., Adv. Funct. Mater. 27(2017)1701626.
doi: 10.1002/adfm.201701626
S. Schluecker, Angew. Chem. Int. Ed. 53(2014) 4756-4795.
doi: 10.1002/anie.201205748
G. McNay, D. Eustace, W.E. Smith, et al., Appl. Spectrosc. 65(2011) 825-837.
doi: 10.1366/11-06365
J.F. Li, Y.J. Zhang, S.Y. Ding, et al., Chem. Rev. 117(2017) 5002-5069.
doi: 10.1021/acs.chemrev.6b00596
M. Vendrell, K.K. Maiti, K. Dhaliwal, et al., Trends Biotechnol. 31(2013) 249-257.
doi: 10.1016/j.tibtech.2013.01.013
D. Ding, Y. Xu, Y. Zou, et al., Nanoscale 9(2017) 10529-10543.
doi: 10.1039/C7NR02587D
J. Gao, N. Zhang, D. Ji, Song, et al., Small Methods 2(2018) 1800045.
M.F. Cardinal, E. Vander Ende, R.A. Hackler, et al., Chem. Soc. Rev. 46(2017) 3886-3903.
doi: 10.1039/C7CS00207F
X.M. Lin, Y. Cui, Y.H. Xu, et al., Anal. Bioanal. Chem. 394(2009) 1729-1745.
doi: 10.1007/s00216-009-2761-5
J.F. Li, J.R. Anema, T. Wandlowski, et al., Chem. Soc. Rev. 44(2015) 8399-8409.
doi: 10.1039/C5CS00501A
X. Bian, Z.L. Song, Y. Qian, et al., Sci. Rep. 4(2014) 6093.
E. Bailo, V. Deckert, Chem. Soc. Rev. 37(2008) 921-930.
doi: 10.1039/b705967c
J. Steidtner, B. Pettinger, Phys. Rev. Lett. 100(2008) 236101.
doi: 10.1103/PhysRevLett.100.236101
J.F. Li, Y.F. Huang, Y. Ding, et al., Nature 464(2010) 392-395.
doi: 10.1038/nature08907
J.F. Li, X.D. Tian, S.B. Li, et al., Nature Protoc. 8(2013) 52-65.
doi: 10.1038/nprot.2012.141
J.R. Anema, J.F. Li, Z.L. Yang, et al., Annu. Rev. Anal. Chem. 4(2011) 129-150.
doi: 10.1146/annurev.anchem.111808.073632
X.F. Lai, Y.X. Zou, S.S. Wang, et al., Anal. Chem. 88(2016) 5385-5391.
doi: 10.1021/acs.analchem.6b00714
Y. Zou, S. Huang, Y. Liao, et al., Chem. Sci. 9(2018) 2842-2849.
doi: 10.1039/C7SC05442D
Z.L. Song, X. Dai, M. Li, et al., Chem. Commun. 54(2018) 8618-8621.
doi: 10.1039/C8CC04388D
W. Gao, X. Wang, H. Fan, et al., Sci. Bull. 60(2015) 1101-1107.
doi: 10.1007/s11434-015-0814-z
F. Liu, L. Zhang, Q. Dong, et al., Acta Phys.-Chim. Sin. 35(2019) 651-656.
Z.L. Song, Z. Chen, X. Bian, et al., J. Am. Chem. Soc. 136(2014) 13558-13561.
doi: 10.1021/ja507368z
Y. Zou, L. Chen, Z. Song, et al., Nano Res. 9(2016) 1418-1425.
doi: 10.1007/s12274-016-1037-6
R. Goodacre, D. Graham, K. Faulds, TrAC-Trends Anal. Chem. 102(2018) 359-368.
doi: 10.1016/j.trac.2018.03.005
S.E. Bell, N.M. Sirimuthu, Chem. Soc. Rev. 37(2008) 1012-1024.
doi: 10.1039/b705965p
W. Shen, X. Lin, C. Jiang, et al., Angew. Chem. Int. Ed. 54(2015) 7308-7312.
doi: 10.1002/anie.201502171
Y. Zhang, Y. Zou, F. Liu, et al., Anal. Chem. 88(2016) 10611-10616.
doi: 10.1021/acs.analchem.6b02958
Y. Tu, P. Ren, D. Deng, et al., Nano Energy 52(2018) 494-500.
doi: 10.1016/j.nanoen.2018.07.062
M. Li, W. Wang, Z. Chen, et al., Sens. Actuators B-Chem. 260(2018) 778-785.
doi: 10.1016/j.snb.2018.01.093
X.W. Wang, W. Gao, H.H. Fan, et al., Nanoscale 8(2016) 7942-7948.
doi: 10.1039/C6NR00369A
X.K. Nie, Y.T. Xu, Z.L. Song, et al., Nanoscale 6(2014) 13097-13103.
doi: 10.1039/C4NR03837A
H. Rydberg, M. Dion, N. Jacobson, et al., Phys. Rev. Lett. 91(2003)126402.
doi: 10.1103/PhysRevLett.91.126402
P.L. De Andres, R. Ramírez, J.A. Vergés, Phy. Rev. B 77(2008)045403.
doi: 10.1103/PhysRevB.77.045403
S. Sadhasivam, S. Savitha, C.J. Wu, et al., Int. J. Pharm. 480(2015) 8-14.
doi: 10.1016/j.ijpharm.2015.01.029
M. Bystrzejewski, S. Cudzilo, A. Huczko, et al., Biomol. Eng. 24(2007) 555-558.
doi: 10.1016/j.bioeng.2007.08.006
X.M. Sun, Y.D. Li, Angew. Chem. Int. Ed. 43(2004) 597-601.
doi: 10.1002/anie.200352386
Y. Han, P. Li, Y. Xu, et al., Small 11(2015) 877-885.
doi: 10.1002/smll.201401989
Y. Liu, Y. Hu, J. Zhang, J. Phys. Chem. C 118(2014) 8993-8998.
doi: 10.1021/jp500751a
D. Ding, Z.L. Song, Z.Q. Cheng, et al., J. Mater. Chem. A 2(2014) 472-477.
doi: 10.1039/C3TA14054G
K.A.I. Yan, L.E.I. Fu, H. Peng, et al., Acc. Chem. Res. 46(2013) 2263-2274.
doi: 10.1021/ar400057n
Z. Yan, Z. Peng, J.M. Tour, Acc. Chem. Res. 47(2014) 1327-1337.
doi: 10.1021/ar4003043
H.C. Lee, W.W. Liu, S.P. Chai, et al., Procedia Chem. 19(2016) 916-921.
doi: 10.1016/j.proche.2016.03.135
X. Li, W. Cai, J. An, et al., Science 324(2009) 1312-1314.
doi: 10.1126/science.1171245
Y.T. Xu, L. Chen, Z. Chen, Acta Phys.-Chim. Sin. 33(2017) 28-39.
W.S. Seo, J.H. Lee, X. Sun, et al., Nat. Mater. 5(2006) 971-976.
doi: 10.1038/nmat1775
Z.L. Song, X.H. Zhao, W.N. Liu, et al., Small 9(2013) 951-957.
doi: 10.1002/smll.201201975
S. Wang, Z. Liu, Y. Zou, et al., Analyst 141(2016) 3337-3342.
doi: 10.1039/C6AN00483K
Y. Li, X. Hu, D. Ding, et al., Nat. Commun. 8(2017) 15653.
doi: 10.1038/ncomms15653
L. Zhang, F. Liu, Y. Zou, et al., Anal. Chem. 90(2018) 11183-11187.
doi: 10.1021/acs.analchem.8b03040
J.R. Baena, B. Lendl, Curr. Opin. Chem. Biol. 8(2004) 534-539.
doi: 10.1016/j.cbpa.2004.08.014
Y.F. Huang, H.P. Zhu, G.K. Liu, et al., J. Am. Chem. Soc. 132(2010) 9244-9246.
doi: 10.1021/ja101107z
H. Zhang, L. Sun, Y. Zhang, et al., Chin. Chem. Lett. 29(2018) 981-984.
doi: 10.1016/j.cclet.2017.10.017
D. Graham, R. Goodacre, Chem. Soc. Rev. 37(2008) 883-884.
doi: 10.1039/b804297g
M.M. Harper, K.S. McKeating, K. Faulds, Phys. Chem. Chem. Phys. 15(2013) 5312-5328.
doi: 10.1039/c2cp43859c
H. Lei, Y. Hu, G. Li, Chin. Chem. Lett. 29(2018) 509-512.
doi: 10.1016/j.cclet.2017.08.012
C. Zong, M. Xu, L.J. Xu, et al., Chem. Rev. 118(2018) 4946-4980.
doi: 10.1021/acs.chemrev.7b00668
P. Mosier-Boss, Nanomaterials 7(2017) 142.
doi: 10.3390/nano7060142
B. Dong, Y. Fang, X. Chen, et al., Langmuir 27(2011) 10677-10682.
doi: 10.1021/la2018538
K. Liu, Y. Bai, L. Zhang, et al., Nano Lett. 16(2016) 3675-3681.
doi: 10.1021/acs.nanolett.6b00868
Z. Yin, Y. Wang, C. Song, et al., J. Am. Chem. Soc. 140(2018) 864-867.
doi: 10.1021/jacs.7b11293
P.B. Luppa, C. Müller, A. Schlichtiger, et al., TrAC-Trends Anal. Chem. 30(2011) 887-898.
doi: 10.1016/j.trac.2011.01.019
V. Gubala, L.F. Harris, A.J. Ricco, et al., Anal. Chem. 84(2012) 487-515.
doi: 10.1021/ac2030199
S.K. Vashist, P.B. Luppa, L.Y. Yeo, et al., Trends Biotechnol. 33(2015) 692-705.
doi: 10.1016/j.tibtech.2015.09.001
S. Wang, T. Chinnasamy, M.A.Lifson, et al., TrendsBiotechnol. 34(2016) 909-921.
V. Tran, B. Walkenfort, M. König, et al., Angew. Chem. Int. Ed. 58(2019) 442-446.
doi: 10.1002/anie.201810917
O.J.R. Clarke, B.L. Goodall, H.P. Hui, et al., Anal. Chem. 89(2017) 1405-1410.
doi: 10.1021/acs.analchem.6b04710
J. Van Rie, W. Thielemans, Nanoscale 9(2017) 8525-8554.
doi: 10.1039/C7NR00400A
J.H. Granger, N.E. Schlotter, A.C. Crawford, et al., Chem. Soc. Rev. 45(2016) 3865-3882.
doi: 10.1039/C5CS00828J
H. Marks, M. Schechinger, J. Garza, et al., Nanophotonics 6(2017) 681-701.
P. Miškovský, D. Jancura, S. Sánchez-Cortés, et al., J. Am. Chem. Soc.120(1998) 6374-6379.
doi: 10.1021/ja974233a
Y. Zou, Y. Zhang, Y. Xu, et al., Anal. Chem. 90(2018) 13687-13694.
doi: 10.1021/acs.analchem.8b04058
L. Xie, X. Yang, Y. He, et al., ACS Appl. Mater. Interfaces 10(2018) 15200-15206.
doi: 10.1021/acsami.7b19717
D. Martín-Yerga, A. Pérez-Junquera, M.B. González-García, et al., Chem. Commun. 54(2018) 5748-5751.
doi: 10.1039/C8CC02069H
P. Mao, C. Liu, G. Favraud, et al., Nat. Commun. 9(2018) 5428.
doi: 10.1038/s41467-018-07869-5
Y. Hu, H. Cheng, X. Zhao, et al., ACS Nano 11(2017) 5558-5566.
doi: 10.1021/acsnano.7b00905
C.L. Zavaleta, E. Garai, J.T. Liu, et al., Proc. Natl. Acad. Sci. U. S. A. 110(2013) E2288-E2297.
doi: 10.1073/pnas.1211309110
L. Wu, W. Wang, W. Zhang, et al., NPG Asia Mater. 10(2018) e462.
doi: 10.1038/am.2017.230
R.M. Davis, B. Kiss, D.R. Trivedi, et al., ACS Nano 12(2018) 9669-9679.
doi: 10.1021/acsnano.8b03217
S. Mondal, U. Rana, S. Malik, ACS Appl. Mater. Interfaces 7(2015) 10457-10465.
doi: 10.1021/acsami.5b01806
K.M. Mayer, J.H. Hafner, Chem. Rev. 111(2011) 3828-3857.
doi: 10.1021/cr100313v
W. Cao, H.E. Elsayed-Ali, Mater. Lett. 63(2009) 2263-2266.
doi: 10.1016/j.matlet.2009.07.052
C. Levard, B.C. Reinsch, F.M. Michel, et al., Environ. Sci. Technol. 45(2011) 5260-5266.
doi: 10.1021/es2007758
S.K. Gahlaut, K. Yadav, C. Sharan, et al., Anal. Chem. 89(2017) 13582-13588.
doi: 10.1021/acs.analchem.7b04064
Y. Zhang, W. Yu, L. Pei, et al., Food Chem. 169(2015) 80-84.
doi: 10.1016/j.foodchem.2014.07.129
H.C. Shin, A.W. Alani, D.A. Rao, et al., J. Control. Release 140(2009) 294-300.
doi: 10.1016/j.jconrel.2009.04.024
Y. Fang, G. Zheng, J. Yang, et al., Angew. Chem. Int. Ed. 53(2014) 5366-5370.
doi: 10.1002/anie.201402002
M.P. Cecchini, V.A. Turek, J. Paget, et al., Nat. Mater. 12(2013) 165-171.
doi: 10.1038/nmat3488
G.C. Phan-Quang, H.K. Lee, I.Y. Phang, et al., Angew. Chem. Int. Ed. 54(2015) 9691-9695.
doi: 10.1002/anie.201504027
M. Su, X. Li, S. Zhang, et al., Anal. Chem. 91(2019) 2288-2295.
doi: 10.1021/acs.analchem.8b04893
M.P. Konrad, A.P. Doherty, S.E. Bell, Anal. Chem. 85(2013) 6783-6789.
doi: 10.1021/ac4008607
Y. Ma, H. Liu, M. Mao, et al., Anal. Chem. 88(2016) 8145-8151.
doi: 10.1021/acs.analchem.6b01884
E. Smirnov, M.D. Scanlon, D. Momotenko, et al., ACS Nano 8(2014) 9471-9481.
doi: 10.1021/nn503644v
L. Tian, M. Su, F. Yu, et al., Nat. Commun. 9(2018) 3642.
doi: 10.1038/s41467-018-05920-z
G. Saranya, P. Anees, M.M. Joseph, et al., Chem.-Eur. J. 23(2017) 7191-7195.
doi: 10.1002/chem.201700839
Z. Guo, S. Park, J. Yoon, et al., Chem. Soc. Rev. 43(2014) 16-29.
doi: 10.1039/C3CS60271K
X. Wu, Y. Zhang, K. Takle, et al., ACS Nano 10(2016) 1060-1066.
doi: 10.1021/acsnano.5b06383
I. Martinic', S.V. Eliseeva, T.N. Nguyen, et al., J. Am. Chem. Soc. 139(2017) 8388-8391.
doi: 10.1021/jacs.7b01587
A. Sujith, T. Itoh, H. Abe, et al., Anal. Bioanal. Chem. 394(2009) 1803-1809.
doi: 10.1007/s00216-009-2883-9
S. Schlücker, B. Küstner, A. Punge, et al., J. Raman Spectrosc. 37(2006) 719-721.
doi: 10.1002/jrs.1534
A.J. Wilson, K.A. Willets, Nanomed. Nanobiotechnol. 5(2013) 180-189.
doi: 10.1002/wnan.1208
K.A. Willets, Chem. Soc. Rev. 43(2014) 3854-3864.
doi: 10.1039/C3CS60334B
Z. Zhu, H. Meng, W. Liu, et al., Angew. Chem. Int. Ed. 50(2011) 1593-1596.
doi: 10.1002/anie.201005493
X. Chen, Q. Zhang, J. Li, et al., ACS Nano 12(2018) 5646-5656.
doi: 10.1021/acsnano.8b01440
F. Kim, J.H. Song, P. Yang, J. Am. Chem. Soc. 124(2002) 14316-14317.
doi: 10.1021/ja028110o
O.R. Miranda, T.S. Ahmadi, J. Phys. Chem. B 109(2005) 15724-15734.
doi: 10.1021/jp0514832
Z. Chen, S.M. Tabakman, A.P. Goodwin, et al., Nat.Biotechnol. 26(2008) 1285-1292.
doi: 10.1038/nbt.1501
E.C. Dreaden, A.M. Alkilany, X. Huang, et al., Chem. Soc. Rev. 41(2012) 2740-2779.
doi: 10.1039/C1CS15237H
X. Yang, M. Yang, B. Pang, et al., Chem. Rev. 115(2015) 10410-10488.
doi: 10.1021/acs.chemrev.5b00193
K. Yang, L. Feng, X. Shi, et al., Chem. Soc. Rev. 42(2013) 530-547.
doi: 10.1039/C2CS35342C
M.P. Stewart, A. Sharei, X. Ding, et al., Nature 538(2016) 183-192.
doi: 10.1038/nature19764
A.D. Ellington, J.W. Szostak, Nature 346(1990) 818-822.
doi: 10.1038/346818a0
C. Tuerk, L. Gold, Science 249(1990) 505-510.
doi: 10.1126/science.2200121
S.K. Li, Z.T. Liu, J.Y. Li, et al., ACS Appl. Mater. Interfaces 10(2018) 14483-14490.
doi: 10.1021/acsami.8b02262
S.K. Li, A.Y. Chen, Y.Q. Chai, Electrochim. Acta 212(2016) 767-774.
doi: 10.1016/j.electacta.2016.07.074
H.M. Meng, H. Liu, H.L. Kuai, Chem. Soc. Rev. 45(2016) 2583-2602.
doi: 10.1039/C5CS00645G
D. Ding, Y. Zhang, E.A. Sykes, et al., Nano Res. 12(2019) 129-135.
doi: 10.1007/s12274-018-2191-9
S.A. Moosavian, A. Sahebkar, Cancer Lett. 448(2019) 144-154.
doi: 10.1016/j.canlet.2019.01.045
R. Mout, D.F. Moyano, S. Rana, et al., Chem. Soc. Rev. 41(2012) 2539-2544.
doi: 10.1039/c2cs15294k
J. Song, X. Yang, O. Jacobson, et al., Adv. Mater. 27(2015) 4910-4917.
doi: 10.1002/adma.201502486
Y. Liu, M. Yang, J. Zhang, et al., ACS Nano 10(2016) 2375-2385.
doi: 10.1021/acsnano.5b07172
A.K. Parchur, G. Sharma, J.M. Jagtap, et al., ACS Nano 12(2018) 6597-6611.
doi: 10.1021/acsnano.8b01424
J.Y. Zeng, M.K. Zhang, M.Y. Peng, et al., Adv. Funct. Mater. 28(2018)1705451.
doi: 10.1002/adfm.201705451
Q. Dong, X. Wang, X. Hu, et al., Angew. Chem. Int. Ed. 57(2018) 177-181.
doi: 10.1002/anie.201709648
M. Hashimoto, T. Araki, S. Kawata, Opt. Lett. 25(2000) 1768-1770.
doi: 10.1364/OL.25.001768
B. Elumalai, A. Prakasarao, B. Ganesan, et al., J. Raman Spectrosc. 46(2015) 84-93.
doi: 10.1002/jrs.4601
J. Kneipp, H. Kneipp, K. Kneipp, Proc. Natl. Acad. Sci. U. S. A.103(2006) 17149-17153.
doi: 10.1073/pnas.0608262103
L. Lin, X. Tian, S. Hong, et al., Angew. Chem. Int. Ed. 125(2013) 7407-7412.
doi: 10.1002/ange.201301387
Y. Yin, Q. Li, S. Ma, et al., Anal. Chem. 89(2017) 1551-1557.
doi: 10.1021/acs.analchem.6b03521
K.V. Kong, Z. Lam, W.D. Goh, et al., Angew. Chem. Int. Ed. 51(2012) 9796-9799.
doi: 10.1002/anie.201204349
E. Ly, O. Piot, A. Durlach, et al., Analyst 134(2009) 1208-1214.
doi: 10.1039/b820998g
S. Bamrungsap, T. Chen, M.I. Shukoor, et al., ACS Nano 6(2012) 3974-3981.
doi: 10.1021/nn3002328
S. Rodríguez-Enríquez, S.C. Pacheco-Velázquez, J.C. Gallardo-Pérez, et al., J. Cell. Biochem. 112(2011) 2703-2715.
doi: 10.1002/jcb.23224
Z.A. Nima, M. Mahmood, Y. Xu, et al., Sci. Rep. 4(2014) 4752.
D. Craig, S. McAughtrie, J. Simpson, et al., Anal. Chem. 86(2014) 4775-4782.
doi: 10.1021/ac4038762
J. Pan, W. Chen, Y. Ma, et al., Chem. Soc. Rev. 47(2018) 5574-5587.
doi: 10.1039/C7CS00854F
Y. Liu, H. Zhou, Z. Hu, et al., Biosens. Bioelectron. 94(2017) 131-140.
doi: 10.1016/j.bios.2017.02.032
S.Y. Ding, J. Yi, Li J.F, et al., Nat. Rev. Mater. 1(2016) 16021.
doi: 10.1038/natrevmats.2016.21
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Yunlong Li , Xinyu Zhang , Shuang Liu , Chunsheng Li , Qiang Wang , Jin Ye , Yong Lu , Jiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
Bin Fang , Jiaqi Yang , Limin Wang , Haoqin Li , Jiaying Guo , Jiaxin Zhang , Qingyuan Guo , Bo Peng , Kedi Liu , Miaomiao Xi , Hua Bai , Li Fu , Lin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Haixian Ren , Yuting Du , Xiaojing Yang , Fangjun Huo , Le Zhang , Caixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867
Fan Zheng , Runsha Xiao , Shuai Huang , Zhikang Chen , Chen Lai , Anyao Bi , Heying Yao , Xueping Feng , Zihua Chen , Wenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Beitong Zhu , Xiaorui Yang , Lirong Jiang , Tianhong Chen , Shuangfei Wang , Lintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222
Yu Yan , Jiawei Song , Dongdong Liu , Zihan Liu , Jialing Cheng , Zhiyang Chen , Yanfang Yang , Weizhe Jiang , Hongliang Wang , Jun Ye , Yuling Liu . Simple and versatile in situ thermo-sensitive hydrogel for rectal administration of SZ-A to alleviate inflammation and repair mucosal barrier in ulcerative colitis. Chinese Chemical Letters, 2024, 35(6): 109736-. doi: 10.1016/j.cclet.2024.109736
Ting Pan , Dinghu Zhang , Guomei You , Xiaoxia Wu , Chenguang Zhang , Xinyu Miao , Wenzhi Ren , Yiwei He , Lulu He , Yuanchuan Gong , Jie Lin , Aiguo Wu , Guoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
Yuhao Ma , Yufei Zhou , Mingchuan Yu , Cheng Fang , Shaoxia Yang , Junfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Haiyang Gu , Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483