Citation: Xu Xin-Ming, Chen De-Mao, Wang Zu-Li. Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions[J]. Chinese Chemical Letters, ;2020, 31(1): 49-57. doi: 10.1016/j.cclet.2019.05.048
-
In recent years, the transition metal-free sulfenylation of C-H bond for C-S formation has been rapidly advanced and has become an eco-friendly synthetic tool for pharmacists and organic chemists. Various natural or bioactive molecules such as (hetero)arenes, olefins, carbonyl compounds, alkanes, have been employed for sulfenylating reactions. This review will focus on the recent five-year advances in C-S bond formation via direct sulfenylation of C(sp3)-H bonds under metal-free conditions and elaborate their mechanisms from a new perspective.
-
Keywords:
- Sulfenylation,
- C(sp3)-H bond,
- Metal-free,
- Reaction mechanism,
- Synthetic method
-
-
[1]
(a) R.J. Cremlyn, An Introduction to Organosulfur Chemistry, Wiley, New York, 1996;
(b) D. Meng, W. Chen, W. Zhao, J. Nat. Prod. 70 (2007) 824-829;
(c) M. Kvasnika, M. Urban, N.J. Dickinson, J. Sarek, Nat. Prod. Rep. 32 (2015) 1303-1330. -
[2]
M.H. Feng, B.Q. Tang, H.L. Steven, X.F. Jiang, Curr. Top. Med. Chem. 16(2016) 1200-1216. doi: 10.2174/1568026615666150915111741
-
[3]
(a) D.A. Boyd, Angew. Chem. Int. Ed. 55 (2016) 15486-15502;
(b) D. Wu, W. Pisula, M.C. Haberecht, X. Feng, K. Müllen, Org. Lett. 11 (2009) 5686-5689;
(c) S.M. Yang, J.J. Shie, J.M. Fang, S.K. Nandy, Y.Y. Chang, J. Org. Chem. 67 (2002) 52085215. -
[4]
(a) J.C. Carretero, Chem. Commun. 47(2011) 2207-2211;
(b) H. Pellisier, Chiral Sulfur Ligands in Asymmetric Catalysis, RSC Catalysis Series 2, Cambridge, 2009. -
[5]
(a) A. Kausar, S. Zulfiqar, M.I. Sarwar, Pol. Rev. 54 (2014) 185-267;
(b) A.S. Rahate, K.R. Nemade, S.A. Waghuley, Rev. Chem. Eng. 29 (2013) 471-489;
(c) N. Spassky, Phosphorus Sulfur Silicon Relat. Elem. 74 (1993) 71-92. -
[6]
(a) J.F. Hartwig, Nature 455 (2008) 314-322;
(b) Q. Lu, J. Zhang, F.L. Wei, et al., Angew. Chem. Int. Ed. 52 (2013) 7156-7159;
(c) Q.Q. Lu, J. Zhang, G.L. Zhao, et al., J. Am. Chem. Soc.135 (2013) 11481-11484;
(d) S.H. Hao, L.X. Li, D.Q. Dong, Z.L. Wang, Chin. J. Catal. 38 (2017) 1664-1667;
(e) L.H. Lu, S.J. Zhou, W.B. He, et al., Org. Biomol. Chem. 16 (2018) 9064-9068;
(f) L.Y. Xie, Y.J. Li, J. Qu, et al., Green Chem. 19 (2017) 5642-5646;
(g) F.L. Zeng, X.L. Chen, S.Q. He, et al., Org. Chem. Front. 6 (2019) 1476-1480;
(h) D. Yang, P. Sun, W. Wei, et al., Chem. -Eur. J. 24 (2018) 4423-4427;
(i) L. Penga, Z. Hua, Z. Tang, Y. Jiao, X. Xu, Chin. Chem. Lett. 30 (2019) 1481-1487. -
[7]
(a) M. Martinek, M. Korf, J. Srogl, Chem. Commun. 46 (2010) 4387-4389;
(b) S.K. Sahoo, A. Banerjee, S. Chakraborty, B.K. Patel, ACS Catal. 2 (2012) 544-551;
(c) O. Saidi, J. Marafie, A.E. Ledger, et al., J. Am. Chem. Soc. 133 (2011) 19298-19301;
(d) N. Umierski, G. Manolikakes, Org. Lett. 15 (2013) 4972-4975;
(e) Z. Wu, H. Song, X. Cui, et al., Org. Lett. 15 (2013) 1270-1273;
(f) B. Niu, L. Xu, P. Xie, et al., ACS Comb. Sci. 16 (2014) 454-458. -
[8]
(a) S.N. Zhang, S.H. Yang, L.H. Huang, et al., Chin. J. Org. Chem. 35 (2015) 2259-2274;
(b) R. Chitrakar, A. Subbarayappa, Chem. Rec. 17 (2017) 1;
(c) Y.Y. Liu, J. Xiong, L. Wei, Chin. J. Org. Chem. 37 (2017) 1667-1680;
(d) D.Q. Dong, S.H. Hao, D.S. Yang, L.X. Li, Z.L. Wang, Eur. J. Org. Chem. 2017 (2017) 6576-6592;
(e) L. Li, Y.Q. Ding, Mini-Rev. Org. Chem. 14 (2017) 407-418;
(f) R. Dalpozzo, Org. Chem. Front. 4 (2017) 2063-2078;
(g) M. Freckleton, A. Baeza, L. Benavent, R. Chinchilla, Asian. J. Org. Chem. 7 (2018) 1006-1014;
(h) C.A. Jin, Q. Xu, G.F. Feng, Y. Jin, L.Y. Zahng, Chin. J. Org. Chem. 38 (2018) 775-790. -
[9]
(a) A. Ghaderi, Tetrahedron 72 (2016) 4758-4782;
(b) K.L. Dunbar, D.H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 117 (2017) 5521-5577;
(c) J. Zhu, W.C. Yang, X.D. Wang, L. Wu, Adv. Synth. Catal. 360 (2018) 386-400;
(d) Y. Luo, Y. Ma, Z. Hou, J. Am. Chem. Soc. 140 (2018) 114-117. -
[10]
B.V. Varun, K. Gadde, K.R. Prabhu, Org. Lett. 17(2015) 2944-2947. doi: 10.1021/acs.orglett.5b01221
-
[11]
H. Cao, J. Yuan, C. Liu, X.Q. Hu, A.W. Lei, RSC Adv. 5(2015) 41493-41496. doi: 10.1039/C5RA04906G
-
[12]
Y. Jiang, J.X. Zou, L.T. Huang, et al., Org. Biomol. Chem. 16(2018) 1641-1645. doi: 10.1039/C8OB00080H
-
[13]
Q. Chen, X. Wang, C. Wen, et al., RSC Adv. 7(2017) 39758-39761. doi: 10.1039/C7RA06904A
-
[14]
Y. Liu, S.S. Badsara, Y. Liu, C. Lee, RSC Adv. 5(2015) 44299-44305. doi: 10.1039/C5RA07204B
-
[15]
R. Rahaman, N. Devi, P. Barman, Tetrahedron Lett. 56(2015) 4224-4227. doi: 10.1016/j.tetlet.2015.05.062
-
[16]
N. Devi, R. Rahaman, K. Sarma, P. Barman, Eur. J. Org. Chem. 2016(2016) 384-388. doi: 10.1002/ejoc.201501148
-
[17]
B.M. Trost, Chem. Rev. 78(1978) 363-382. doi: 10.1021/cr60314a002
-
[18]
B. Hu, Q. Zhang, S. Zhao, et al., Adv. Synth. Catal. 361(2019) 49-54. doi: 10.1002/adsc.201801138
-
[19]
Y. Siddaraju, K.R. Prabhu, Org. Lett. 18(2016) 6090-6093. doi: 10.1021/acs.orglett.6b03084
-
[20]
Y. Siddaraju, K.R. Prabhu, J. Org. Chem. 83(2018) 2986-2992. doi: 10.1021/acs.joc.7b03290
-
[21]
Y. Siddaraju, K.R. Prabhu, Org. Biomol. Chem. 15(2017) 5191-5196. doi: 10.1039/C7OB00561J
-
[22]
N. Devi, R. Rahaman, K. Sarma, T. Khan, P. Barman, Eur. J. Org. Chem. 2017(2017) 1520-1525.
-
[23]
(a) P.N. Kalaria, S.P. Satasia, J.R. Avalani, D.K. Raval, Eur. J. Med. Chem. 83 (2014) 655-664;
(b) S.C. Karad, V.B. Purohit, D.K. Raval, Eur. J. Med. Chem. 84 (2014) 51-58. -
[24]
R.D. Kamani, V.B. Purohit, R.P. Thummar, et al., ChemistrySelect 2(2017) 9670-9673. doi: 10.1002/slct.201701924
-
[25]
(a) H. Jin, W. Wang, Z. Yang, et al., Heterocycles 96 (2018) 1786-1794;
(b) X. Zhao, X. Lu, A. Wei, et al., Tetrahedron Lett. 57 (2016) 5330-5333;
(c) X. Zhao, A. Wei, X. Lu, K. Lu, Molecules 22 (2017) 1208-1219. -
[26]
X. Liu, H. Cui, D. Yang, et al., RSC Adv. 6(2016) 51830-51833. doi: 10.1039/C6RA09739A
-
[27]
Q. Chen, Y. Huang, X. Wang, et al., Tetrahedron Lett. 58(2017) 3928-3931. doi: 10.1016/j.tetlet.2017.08.067
-
[28]
(a) A.F. Vaquer, A. Frongia, F. Secci, E. Tuveri, RSC Adv. 5 (2015) 96695-96704;
(b) H.W. Noh, C. Lee, H.Y. Jang, Bull. Korean Chem. Soc. 38 (2017) 389-391;
(c) J.Q. Zhao, S.W. Luo, X.M. Zhang, et al., Tetrahedron 73 (2017) 5444-5450. -
[29]
Y. Li, F. Zhu, Z. Wang, X.F. Wu, Chem. -Asian J. 11(2016) 3503-3507. doi: 10.1002/asia.201601376
-
[30]
D. Wang, Z. Liu, Z. Wang, X. Ma, P. Yu, Green Chem. 21(2019) 157-163. doi: 10.1039/C8GC03072C
-
[31]
Y. Liu, X. Yuan, K. Su, Y. Tian, B. Chen, Eur. J. Org. Chem. 2019(2019) 1649-1652. doi: 10.1002/ejoc.201801806
-
[32]
Q. Chen, G. Yu, X. Wang, Y. Ou, Y. Huo, Green Chem. 21(2019) 798-802. doi: 10.1039/C8GC03898H
-
[33]
S.K. Ayer, J.L. Roizen, J. Org. Chem. 84(2019) 3508-3523. doi: 10.1021/acs.joc.9b00105
-
[34]
K. Liao, F. Zhou, J. Yu, W. Gao, J. Zhou, Chem. Commun. 51(2015) 16255-16258. doi: 10.1039/C5CC07010D
-
[35]
L. Huang, J. Li, Y. Zhao, et al., J. Org. Chem. 80(2015) 8933-8941. doi: 10.1021/acs.joc.5b01606
-
[36]
Y. You, Z. Wu, Z. Wang, et al., J. Org. Chem. 80(2015) 8470-8477. doi: 10.1021/acs.joc.5b01491
-
[37]
X. Gao, J. Han, L. Wang, Synthesis 48(2016) 2603-2611. doi: 10.1055/s-0035-1560435
-
[38]
Y. E, T. Yuan, L. Yin, Y. Xu, Tetrahedron Lett. 58(2017) 2521-2524. doi: 10.1016/j.tetlet.2017.05.015
-
[39]
S.J. Singha Roy, S. Mukherjee, Org. Biomol. Chem. 15(2017) 6921-6925. doi: 10.1039/C7OB01714F
-
[40]
J. Han, Y. Zhang, X.Y. Wu, H.N.C. Wong, Chem. Commun. 55(2019) 397-400. doi: 10.1039/C8CC09049A
-
[41]
L. Cui, Y. You, X. Mi, S. Luo, Org. Chem. Front. 5(2018) 2313-2316. doi: 10.1039/C8QO00496J
-
[42]
K. Nagata, D. Sano, O. Aoyama, et al., Heterocycles 92(2016) 631-635. doi: 10.3987/COM-16-13414
-
[43]
F. Rota, L. Benhamou, T.D. Sheppard, Synlett 27(2016) 33-36. doi: 10.1055/s-0035-1560769
-
[1]
-
-
[1]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[2]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[3]
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
-
[4]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[5]
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
-
[6]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[7]
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
-
[8]
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
-
[9]
Tao Zhou , Jing Zhou , Yunyun Liu , Jie-Ping Wan , Fen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683
-
[10]
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
-
[11]
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
-
[12]
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
-
[13]
Yujia Shi , Yan Qiao , Pengfei Xie , Miaomiao Tian , Xingwei Li , Junbiao Chang , Bingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544
-
[14]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[15]
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
-
[16]
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
-
[17]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[18]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[19]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[20]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[1]
Metrics
- PDF Downloads(27)
- Abstract views(1136)
- HTML views(16)