Citation: Li Lei, Wang Juejun, Chen Mengting, Chen Yong, Xiao Wangchuan, Chen Dongyang, Lin Meijin. The impact of vertical π-extension on redox mechanisms of aromatic diimide dyes[J]. Chinese Chemical Letters, ;2019, 30(12): 2254-2258. doi: 10.1016/j.cclet.2019.05.040 shu

The impact of vertical π-extension on redox mechanisms of aromatic diimide dyes

    * Corresponding authors.
    E-mail addresses: heishh@fzu.edu.cn (Y. Chen), meijin_lin@fzu.edu.cn (M. Lin).
  • Received Date: 22 March 2019
    Revised Date: 30 April 2019
    Accepted Date: 21 May 2019
    Available Online: 24 December 2019

Figures(6)

  • Aromatic diimide dyes are an attractive class of redox-active organic molecules for lithium-ion batteries, whose battery performances (stabilities, conductivities and cyclicities) are strongly dependent on the sizes of their π-systems. However, due to the different Clar's structures possessed, three vertically π-extended aromatic diimides, namely, naphthalene diimide (two one-electron reductions), perylene diimide and terrylene diimide (two one-electron reductions), exhibit different electronic redox mechanisms when served as cathode materials in organic lithium-ion batteries. Herein, we have studied carefully the different electrochemical characteristics of the three aromatic diimides through experimental and theoretical calculations. Their battery present different shape of charge/discharge curves resulting from stability of their reduction state during charge/discharge process. Terrylene diimide shows better cycle and rate capacities than those of naphthalene diimide and perylene diimide, which could be attributed to the more energies released during terrylene diimide combining with lithium ions than those of other two diimides.
  • 加载中
    1. [1]

      (a) M. Armand, J.M. Tarascon, Nature 451 (2008) 652-657;
      (b) M. Li, J. Lu, Z. Chen, et al., Adv. Mater. 30 (2018) 1800561;
      (c) Y. Tang, Y. Zhang, W. Li, et al., Chem. Soc. Rev. 44 (2015) 5926-5940.

    2. [2]

      (a) M. Zhu, Y. Huang, Y. Huang, et al., Adv. Funct. Mater. 26 (2016) 4481-4490;
      (b) K. Sharma, K. Pareek, R. Rohan, et al., Angew. Chem. Int. Ed. 43 (2019) 604-611;
      (c) W. Li, F. Gao, X. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 9196-9201;
      (d) H. Zhang, X. Zhang, Y. Ma, Electrochim. Acta 184 (2015) 347-355.

    3. [3]

      (a) Sh. Dai, F. Zhao, Q. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 1336-1343;
      (b) Z. Zhang, Z. Yang, J. Deng, et al., Small 11 (2015) 675-680;
      (c) T.B.Song, T.Yokoyama, C.C.Stoumpos, et al., J.Am.Chem.Soc.139 (2017)836-842;
      (d) Y. Lin, Q. He, F. Zhao, et al., J. Am. Chem. Soc.138 (2016) 2973-2976;
      (e) H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res. 42 (2009) 1809-1818.

    4. [4]

      (a) Zh. Song, H. Zhou, Energy Environ. Sci. 6 (2013) 2280-2301;
      (b) M.E. Bhosale, K. Krishnamoorthy, Chem. Mater. 27 (2015) 2121-2126;
      (c) I.A. Rodríguez-Pérez, Z. Jian, P.K. Waldenmaier, et al., ACS Energy Lett. 1 (2016) 719-723.

    5. [5]

      (a) M.Kolek, F.Otteny, P.Schmidt, et al., EnergyEnviron.Sci.10 (2017)2334-2341;
      (b)J.Winsberg, T.Hagemann, T.Janoschka, et al., Angew.Chem.Int.Ed.55 (2016) 2-28;
      (c) T. Sun, Z.j. Li, H.g. Wang, et al., Angew. Chem.Int. Ed.55 (2016) 10662-10666.

    6. [6]

      (a) L. Chen, S. Liu, L. Zhao, et al., Electrochim. Acta 258 (2017) 677-683;
      (b) W. Huang, Zh. Zhu, L. Wang, et al., Angew. Chem. Int. Ed. 52 (2013) 9162-9166;
      (c) Q. Zhao, Zh. Zhu, J. Chen, Adv. Mater. 29 (2017) 1607007;
      (d) H.g. Wang, Sh. Yuan, Zh. Sia, et al., Energy Environ. Sci. 8 (2015) 3160-3165;
      (e) H.g. Wang, X.b. Zhang, Chem. -Eur. J. 24 (2018) 18235-18245.

    7. [7]

      (a) S.K.M. Nalluri, Zh. Liu, Y. Wu, et al., J. Am. Chem. Soc.138 (2016) 5968-5977;
      (b) Zh. Luo, L. Liu, Q. Zhao, et al., Angew. Chem. Int. Ed. 56 (2017) 12561-12565.

    8. [8]

      (a) D. Chen, A.J. Avestro, Z. Chen, et al., Adv. Mater. 27 (2015) 2907-2912;
      (b) Ch. Wang, Y. Xu, Y. Fang, et al., J. Am. Chem. Soc. 137 (2015) 3124-3130.

    9. [9]

      (a) L. Li, Y.J. Hong, D.Y. Chen, et al., Electrochim. Acta 254 (2017) 255-261;
      (b) L. Li, Y.J. Hong, D.Y. Chen, et al., Chem. -Eur. J. 23 (2017) 16612-16620;
      (c) L. Li, H.X. Gong, D.Y. Chen, et al., Chem. -Eur. J. 24 (2018) 13188-13196.

    10. [10]

      (a) F. Nolde, J. Qu, Ch. Kohl, et al., Chem. -Eur. J. 11 (2005) 3959-3967;
      (b) M. Kremer, M. Kersten, Höger S, Org. Chem. Front. 5 (2018) 1825-1829.

    11. [11]

      (a) L. Li, Y.J. Hong, Y. Lin, et al., Chem. Commun. 54 (2018) 11941-11944;
      (b) S. Seifert, K. Shoyama, D. Schmidt, et al., Angew. Chem. Int. Ed. 55 (2016) 6390-6395.

    12. [12]

      (a) D. Wu, Z. Xie, Z. Zhou, et al., J. Mater. Chem. A 3 (2015) 19137-19143;
      (b) J.O. Oña-Ruales, Y. Ruiz-Morales, J. Phys. Chem. A 118 (2014) 12262-12273;
      (c) A.D. Zdetsis, E.N. Economou, J. Phys. Chem. C 119 (2015) 16991-17003.

    13. [13]

      (a) L. Fedélé, F. Sauvage, M. Bécuwe, J. Mater. Chem. A 2 (2014) 18225-18228;
      (b) H.g. Wang, Sh. Yuan, Zh. Sia, et al., Energy Environ. Sci. 8 (2015) 3160-3165.

    14. [14]

      (a) H. Ke, L. Wang, Y. Chen, et al., J. Mol. Catal. A: Chem. 385 (2014) 26-30;
      (b) M. Marchini, A. Gualandi, L. Mengozzi, et al., Phys. Chem. Chem. Phys. 20 (2018) 8071-8076;
      (c) F. Nolde, J. Qu, Ch. Kohl, et al., Chem. -Eur. J. 11 (2005) 3959-3967.

    15. [15]

      (a) J. Seibt, P. Marquetand, V. Engel, et al., Chem. Phys. 328 (2006) 354-362;
      (b) M.Chen, Y.J. Bae, C.M. Mauck, et al., J. Am. Chem.Soc.140 (2018) 9184-9192.

    16. [16]

      (a) S. Guha, F.S. Goodson, L.J. Corson, et al., J. Am. Chem. Soc. 134 (2012) 13679-13691;
      (b) F.S. Goodson, D.K. Panda, S. Ray, et al., Org. Biomol. Chem. 11 (2013) 4797-4803;
      (c) K. Ida, H. Sakai, K. Ohkubo, et al., J. Phys. Chem. C 118 (2014) 7710-7720.

    17. [17]

      (a) Y. Wu, M. Frasconi, D.M. Gardner, et al., Angew. Chem. Int. Ed. 53 (2014) 9476-9481;
      (b) S.T. Schneebeli, M. Frasconi, Zh. Liu, et al., Angew. Chem. Int. Ed. 52 (2013) 13100-13104;
      (c) Y. Wu, R.M. Young, M. Frasconi, et al., J. Am. Chem. Soc. 137 (2015) 13236-13239.

    18. [18]

      (a) Y. Ding, Y. Li, G. Yu, Chemistry 1 (2016) 790-801;
      (b) Y. Liang, P. Zhang, J. Chen, Chem. Sci. 4 (2013) 1330-1337.

    19. [19]

      M. Park, D.S. Shin, J. Ryu, et al., Adv. Mater. 27 (2015) 5141-5146.  doi: 10.1002/adma.201502329

    20. [20]

      K.Ch. Kim, T. Liu, S.W. Lee, et al., J. Am. Chem. Soc 138 (2016) 2374-2382.  doi: 10.1021/jacs.5b13279

    21. [21]

      (a) D.J. Kim, K.R. Hermann, A. Prokofjevs, et al., J. Am. Chem. Soc. 139 (2017) 6635-6643;
      (b) T. Ma, Z. Pan, L. Miao, et al., Angew. Chem. Int. Ed. 57 (2018) 3158-3162.

    22. [22]

      S. Fujii, T. Enoki, Angew. Chem. Int. Ed. 51 (2012) 7236-7241.  doi: 10.1002/anie.201202560

  • 加载中
    1. [1]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    2. [2]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    3. [3]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    4. [4]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    5. [5]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    6. [6]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    7. [7]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    8. [8]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    9. [9]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    12. [12]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    13. [13]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    14. [14]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    15. [15]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    19. [19]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    20. [20]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

Metrics
  • PDF Downloads(4)
  • Abstract views(507)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return