Delving noble metal and semiconductor nanomaterials into enantioselective analysis
-
* Corresponding author.
E-mail address: zli@hnu.edu.cn (Z. Li)
Citation:
Wen Yongting, Li Zheng, Jiang Jianhui. Delving noble metal and semiconductor nanomaterials into enantioselective analysis[J]. Chinese Chemical Letters,
;2019, 30(9): 1565-1574.
doi:
10.1016/j.cclet.2019.05.036
L.A. Nguyen, H. He, C. Phamhuy, Int. J. Biomed. Sci. 2(2006) 85-100.
K. Stoschitzky, G. Zernig, W. Lindner, J. Clin. Bas. Cardiol. 1(1998) 14-18.
A.M. Barrett, V.A. Cullum, Br. J. Pharmacol. 34(1968) 43-55.
doi: 10.1111/j.1476-5381.1968.tb07949.x
K.H. Rahn, A. Hawlina, F. Kersting, et al., Naunyn-Schmiedeberg's Arch. Pharmacol. 286(1974) 319-323.
doi: 10.1007/BF00498314
M.F. Landoni, A. Soraci, Curr. Drug Metab. 2(2001) 37-51.
doi: 10.2174/1389200013338810
A. Marzo, E. Heftmann, J. Biochem. Biophys. Methods 54(2002) 57-70.
doi: 10.1016/S0165-022X(02)00128-8
J.L. Flanagan, P.A. Simmons, J. Vehige, et al., Nutr. Metab. 7(2010) 30.
doi: 10.1186/1743-7075-7-30
W. Ma, L.G. Xu, L.B. Wang, et al., Adv. Funct. Mater. 29(2019)1805512.
doi: 10.1002/adfm.201805512
C. Hao, L. Xu, H. Kuang, et al., Adv. Mater. (2019), doi:http://dx.doi.org/10.1002/adma.201802075.
doi: 10.1002/adma.201802075
J. Kumar, L.M. Liz-Marzan, Bull. Chem. Soc. Jpn. 92(2019) 30-37.
doi: 10.1246/bcsj.20180236
S.Z. Bisri, C. Piliego, J. Gao, et al., Adv. Mater. 26(2014) 1176-1199.
doi: 10.1002/adma.201304280
W. Ma, L.G. Xu, L.B. Wang, et al., Biosens. Bioelectron. 79(2016) 220-236.
doi: 10.1016/j.bios.2015.12.021
X. Zhang, J. Yin, J. Yoon, Chem. Rev. 114(2014) 4918-4959.
doi: 10.1021/cr400568b
E. Boisselier, D. Astruc, Chem. Soc. Rev. 38(2009) 1759-1782.
doi: 10.1039/b806051g
G.W. Lu, L. Hou, T.Y. Zhang, et al., J. Phys. Chem. C 116(2012) 25509-25516.
doi: 10.1021/jp309450b
E.M. Goldys, M.A. Sobhan, Adv. Funct. Mater. 22(2012) 1906-1913.
doi: 10.1002/adfm.201102057
G.T. Boyd, Z.H. Yu, Y.R. Shen, Phys. Rev. B 33(1986) 7923-7936.
doi: 10.1103/PhysRevB.33.7923
T. Liu, Y.Y. Su, H.J. Song, et al., Analyst 138(2013) 6558-6564.
doi: 10.1039/c3an01343j
J. Fu, Z. Zhang, G. Li, Chin. Chem. Lett. 30(2019) 285-291.
doi: 10.1016/j.cclet.2018.10.031
C. Gautier, T. Burgi, ChemPhysChem 10(2009) 483-492.
doi: 10.1002/cphc.200800709
K.H. Su, Q.H. Wei, et al., Nano Lett. 3(2003) 1087-1090.
doi: 10.1021/nl034197f
G. Gao, Y.W. Jiang, W. Sun, et al., Chin. Chem. Lett. 29(2018) 1475-1485.
doi: 10.1016/j.cclet.2018.07.004
C.D. Medley, J.E. Smith, Z. Tang, et al., Anal. Chem. 80(2008) 1067-1072.
doi: 10.1021/ac702037y
A.O. Govorov, Z. Fan, P. Hernandez, et al., Nano Lett. 10(2010) 1374-1382.
doi: 10.1021/nl100010v
I. Lieberman, G. Shemer, T. Fried, et al., Angew. Chem. Int. Ed. 47(2008) 4855-4857.
doi: 10.1002/anie.200800231
M. Puri, V. Ferry, ACS Nano 255(2018) 12240-12246.
F. Purcell-Milton, R. McKenna, L.J. Brennan, et al., ACS Nano 12(2018) 954-964.
doi: 10.1021/acsnano.7b06691
G.L. Yang, M. Kazes, D. Oron, Adv. Funct. Mater. 28(2018) 1802012.
doi: 10.1002/adfm.201802012
X. Gao, X. Zhang, K. Deng, et al., J. Am. Chem. Soc. 139(2017) 8734-8739.
doi: 10.1021/jacs.7b04224
J.K. Choi, B.E. Haynie, U. Tohgha, et al., ACS Nano 10(2016) 3809-3815.
doi: 10.1021/acsnano.6b00567
M.V. Mukhina, V.G. Maslov, A.V. Baranov, et al., Nano Lett. 15(2015) 2844-2851.
doi: 10.1021/nl504439w
Y.J. Song, W.L. Wei, X.G. Qu, Adv. Mater. 23(2011) 4215-4236.
doi: 10.1002/adma.201101853
K. Saha, S.S. Agasti, C. Kim, et al., Chem. Rev. 112(2012) 2739-2779.
doi: 10.1021/cr2001178
J.R. Mejia-Salazar, O.N. Oliveira, Chem. Rev. 118(2018) 10617-10625.
doi: 10.1021/acs.chemrev.8b00359
W. Ma, H. Kuang, L. Wang, et al., Sci. Rep. 3(2013) 1934.
doi: 10.1038/srep01934
C.Y. Song, M.G. Blaber, G.P. Zhao, et al., Nano Lett. 13(2013) 3256-3261.
doi: 10.1021/nl4013776
L.Y. Wang, K.W. Smith, S. Dominguez-Medina, et al., ACS Photonics 2(2015) 1602-1610.
doi: 10.1021/acsphotonics.5b00395
L. Song, S.F. Wang, N.A. Kotov, et al., Anal. Chem. 84(2012) 7330-7335.
doi: 10.1021/ac300437v
J.H. Chen, X. Zhang, S.X. Cai, et al., Biosens. Bioelectron. 57(2014) 226-231.
doi: 10.1016/j.bios.2014.02.001
M. Zhang, B.C. Ye, Anal. Chem. 83(2011) 1504-1509.
doi: 10.1021/ac102922f
H.H. Yin, X. Huang, W. Ma, et al., Biosens. Bioelectron. 52(2014) 8-12.
doi: 10.1016/j.bios.2013.07.064
H.Y. Su, Q.L. Zheng, H.B. Li, J. Mater. Chem. 22(2012) 6546-6548.
doi: 10.1039/c2jm16746h
E. Zor, Talanta 184(2018) 149-155.
doi: 10.1016/j.talanta.2018.02.096
S.H. Seo, S. Kim, M.S. Han, Anal. Methods 6(2014) 73-76.
doi: 10.1039/C3AY41735B
G.X. Song, F.L. Zhou, C.L. Xu, et al., Analyst 141(2016) 1257-1265.
doi: 10.1039/C5AN02434J
C.W. Liu, B.X. Li, C.L. Xu, Microchim. Acta 181(2014) 1407-1413.
doi: 10.1007/s00604-014-1281-y
Y.W. Wang, X.J. Zhou, C.L. Xu, et al., Sci. Rep. 8(2018) 5296.
doi: 10.1038/s41598-018-23674-y
J. Tashkhourian, M. Afsharinejad, A.R. Zolghadr, Sens. Actuators B-Chem. 232(2016) 52-59.
doi: 10.1016/j.snb.2016.03.097
J. Tashkhourian, M. Afsharinejad, New J. Chem. 41(2017) 13881-13888.
doi: 10.1039/C7NJ02962D
G.X. Song, C.L. Xu, B.X. Li, Sens. Actuators B-Chem. 215(2015) 504-509.
doi: 10.1016/j.snb.2015.03.109
I. Boussouar, Q.J. Chen, X. Chen, et al., Anal. Chem. 89(2017) 1110-1116.
doi: 10.1021/acs.analchem.6b02682
E. Zor, N. Bekar, Biosens. Bioelectron. 91(2017) 211-216.
doi: 10.1016/j.bios.2016.12.031
C.W. Liu, J.Y. Lian, Q. Liu, et al., Anal. Methods 8(2016) 5794-5800.
doi: 10.1039/C6AY01308B
J. Ping, Z.J. He, J.S. Liu, et al., Electrophoresis 39(2018) 486-495.
doi: 10.1002/elps.201700372
Y. Zhao, Y.X. Yang, J. Zhao, et al., Adv. Mater. 28(2016) 4877-4883.
doi: 10.1002/adma.201600369
W.J. Yan, L.G. Xu, W. Ma, et al., Small 10(2014) 4293-4297.
Y. Zhao, L.G. Xu, W. Ma, et al., Nano Lett. 14(2014) 3908-3913.
doi: 10.1021/nl501166m
W. Ma, M.Z. Sun, P. Fu, et al., Adv. Mater. 29(2017) 1703410.
doi: 10.1002/adma.201703410
J. Kumar, H. Erana, E. Lopez-Martinez, et al., Proc. Natl. Acad. Sci. U. S. A. 115(2018) 3225-3230.
doi: 10.1073/pnas.1721690115
E. Hendry, T. Carpy, J. Johnston, et al., Nat. Nanotechnol. 5(2010) 783-787.
doi: 10.1038/nnano.2010.209
J. Garcia-Guirado, M. Svedendahl, J. Puigdollers, et al., Nano Lett. 18(2018) 6279-6285.
doi: 10.1021/acs.nanolett.8b02433
J. Wang, S.S. Zhang, X. Xu, et al., Nanomaterials 8(2018)1703410.
L.G. Xu, Z. Xu, W. Ma, et al., J. Mater. Chem. B 1(2013) 4478-4483.
doi: 10.1039/c3tb20692k
X.L. Wu, L.G. Xu, L.Q. Liu, et al., J. Am. Chem. Soc. 135(2013) 18629-18636.
doi: 10.1021/ja4095445
L.J. Tang, S. Li, L.G. Xu, et al., ACS Appl. Mater. Interfaces 7(2015) 12708-12712.
doi: 10.1021/acsami.5b01259
S. Li, L.G. Xu, W. Ma, et al., J. Am. Chem. Soc. 138(2016) 306-312.
doi: 10.1021/jacs.5b10309
W. Ma, H. Kuang, L.G. Xu, et al., Nat. Commun. 4(2013) 2689.
doi: 10.1038/ncomms3689
F. Zhu, X.Y. Li, Y.C. Li, et al., Anal. Chem. 87(2015) 357-361.
doi: 10.1021/ac504017f
X.L. Zhao, X.L. Wu, L.G. Xu, et al., Biosens. Bioelectron. 66(2015) 554-558.
doi: 10.1016/j.bios.2014.12.021
J.R. Cai, C.L. Hao, M.Z. Sun, et al., Small 14(2018) 1703931.
doi: 10.1002/smll.201703931
L. Zhang, C.L. Xu, G.X. Song, et al., RSC Adv. 5(2015) 27003-27008.
doi: 10.1039/C5RA01271F
L. Zhang, C.L. Xu, C.W. Liu, et al., Anal. Chim. Acta 809(2014) 123-127.
doi: 10.1016/j.aca.2013.11.043
J.J. Wei, Y.J. Guo, J.Z. Li, et al., Anal. Chem. 89(2017) 9781-9787.
doi: 10.1021/acs.analchem.7b01723
N. Shukla, M.A. Bartel, A.J. Gellman, J. Am. Chem. Soc. 132(2010) 8575-8580.
doi: 10.1021/ja908219h
Y.T. Tseng, H.Y. Chang, S.G. Harroun, et al., Anal. Chem. 90(2018) 7283-7291.
doi: 10.1021/acs.analchem.8b00490
L. Ma, Y. Cao, Y. Duan, et al., Angew. Chem. Int. Ed. 56(2017) 8657-8662.
doi: 10.1002/anie.201701994
A. Afkhami, F. Kafrashi, M. Ahmadi, et al., RSC Adv. 5(2015) 58609-58615.
doi: 10.1039/C5RA07396K
Y. Zhao, L.Y. Cui, W. Ke, et al., ACS Sustain. Chem. Eng. 7(2019) 5157-5166.
doi: 10.1021/acssuschemeng.8b06040
L.J. Tang, S. Li, F. Han, et al., Biosens. Bioelectron. 71(2015) 7-12.
doi: 10.1016/j.bios.2015.04.013
Y.C. Zhang, J.Q. Liu, D. Li, et al., ACS Nano 10(2016) 5096-5103.
doi: 10.1021/acsnano.6b00216
S. Basu, A. Paul, A. Chattopadhyay, Chem. Eur. J. 23(2017) 9137-9143.
doi: 10.1002/chem.201701128
A. Guerrero-Martinez, J.L. Alonso-Gomez, B. Auguie, et al., Nano Today 6(2011) 381-400.
doi: 10.1016/j.nantod.2011.06.003
W. Zhao, M.A. Brook, Y.F. Li, ChemBioChem 9(2008) 2363-2371.
doi: 10.1002/cbic.200800282
A.O. Govorov, Z.Y. Fan, P. Hernandez, et al., Nano Lett. 10(2010) 1374-1382.
doi: 10.1021/nl100010v
X. Wang, Z. Tang, Small 13(2017) 1601115.
doi: 10.1002/smll.201601115
X. Yang, L.F. Gan, L. Han, et al., Chem. Commun. 49(2013) 2302-2304.
doi: 10.1039/c3cc00200d
C. Carrillo-Carrion, S. Cardenas, B.M. Simonet, et al., Anal. Chem. 81(2009) 4730-4733.
doi: 10.1021/ac900034h
F. Ghasemi, M.R. Hormozi-Nezhad, M. Mahmoudi, Sci. Rep. 7(2017) 890.
doi: 10.1038/s41598-017-00983-2
K. Ngamdee, S. Kulchat, T. Tuntulani, et al., J. Lumin. 187(2017) 260-268.
doi: 10.1016/j.jlumin.2017.03.016
C. Han, H. Li, Small 4(2008) 1344-1350.
doi: 10.1002/smll.200701221
Y. Wei, H. Li, H. Hao, et al., Polym. Chem. 6(2015) 591-598.
doi: 10.1039/C4PY00618F
R. Freeman, T. Finder, L. Bahshi, et al., Nano Lett. 9(2009) 2073-2076.
doi: 10.1021/nl900470p
G.M.Duran, C.Abellan, A.M.Contento, et al., Microchim.Acta184(2017)815-824.
doi: 10.1007/s00604-017-2074-x
A.K. Visheratina, F. Purcell-Milton, R. Serrano-Garcia, et al., J. Mater. Chem. C 5(2017) 1692-1698.
doi: 10.1039/C6TC04808K
Y. Guo, X. Zeng, H. Yuan, et al., Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 183(2017) 23-29.
doi: 10.1016/j.saa.2017.04.014
C. Wang, J. Qian, K. Wang, et al., Biosens. Bioelectron. 68(2015) 783-790.
doi: 10.1016/j.bios.2015.02.008
D. Wawrzynczyk, J. Szeremeta, M. Samoc, et al., Sens. Actuators B-Chem. 252(2017) 483-491.
doi: 10.1016/j.snb.2017.06.029
T. Delgado-Perez, L.M. Bouchet, M. de la Guardia, et al., Chem.-Eur. J.19(2013) 11068-11076.
doi: 10.1002/chem.201300875
K. Ngamdee, T. Puangmali, T. Tuntulani, et al., Anal. Chim. Acta 898(2015) 93-100.
doi: 10.1016/j.aca.2015.09.038
M. Sun, L. Xu, A. Qu, et al., Nat. Chem. 10(2018) 821-830.
doi: 10.1038/s41557-018-0083-y
M. Shahrajabian, F. Ghasemi, M.R. Hormozi-Nezhad, Sci. Rep. 8(2018) 14011.
doi: 10.1038/s41598-018-32416-z
J.D. Yang, X.P. Tan, X.N. Zhang, et al., Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 151(2015) 591-597.
doi: 10.1016/j.saa.2015.07.012
Y. Li, Y.Z. Zheng, D.K. Zhang, et al., Chin. Chem. Lett. 28(2017) 184-188.
doi: 10.1016/j.cclet.2016.07.020
W. Feng, J.Y. Kim, X. Wang, et al., Sci. Adv. 3(2017) e1601159.
doi: 10.1126/sciadv.1601159
A. Ben Moshe, D. Szwarcman, G. Markovich, ACS Nano 5(2011) 9034-9043.
doi: 10.1021/nn203234b
Zhaohong Chen , Mengzhen Li , Jinfei Lan , Shengqian Hu , Xiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
Ningxiang Wu , Huaping Zhao , Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Di An , Mingdong She , Ziyang Zhang , Ting Zhang , Miaomiao Xu , Jinjun Shao , Qian Shen , Xuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Yi-Fan Wang , Hao-Yun Yu , Hao Xu , Ya-Jie Wang , Xiaodi Yang , Yu-Hui Wang , Ping Tian , Guo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520
Yujia Shi , Yan Qiao , Pengfei Xie , Miaomiao Tian , Xingwei Li , Junbiao Chang , Bingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544
Shuai Zhu , Mingjie Chen , Haichao Shen , Hanming Ding , Wenbo Li , Junliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259