Citation: Han Xiang-Lei, Lin Peng-Peng, Li Qingjiang. Recent advances of allenes in the first-row transition metals catalyzed C—H activation reactions[J]. Chinese Chemical Letters, ;2019, 30(8): 1495-1502. doi: 10.1016/j.cclet.2019.04.027 shu

Recent advances of allenes in the first-row transition metals catalyzed C—H activation reactions


  • Author Bio:

    Qingjiang Li was born in Anhui, China in 1985. He received his Bachelor degree in 2007 from Lanzhou University. Then he moved to Peking University and obtained his Ph.D. under the guidance of Prof. Yanxing Jia. After two years as a research assistant in Prof. Henry N.C. Wong's lab at the Chinese University of Hong Kong, he was appointed as an associate professor at Sun Yat-sen University in 2014. His current research interests are the metal-catalyzed C–H functionalization reactions, the development of novel reactions for organic synthesis, and total synthesis of natural products
  • * Corresponding author at: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
    E-mail address: liqingj3@mail.sysu.edu.cn (Q. Li)
  • Received Date: 30 January 2019
    Revised Date: 26 March 2019
    Accepted Date: 9 April 2019
    Available Online: 16 August 2019

Figures(20)

  • Transition-metal-catalyzed C–H activation reaction has proven to be a powerful and efficient tool for the formation of diverse C–C and C–X bond and construction of functional complex molecules. From the viewpoint of sustainable chemistry, the first-row transition metals, such as Mn, Fe, Co, Ni and Cu, have been recognized as cheap, environmentally friendly and reactively effective catalysts for a number of C–H functionalization reactions. However, compared with the commonly used alkenes and alkynes in the first-row transition-metal-catalyzed C–H activations, considerable achievements have just been made by the use of structurally unique and reactively rich allenes as coupling partners in recent years. This review summarizes the recent progress of the first-row transition-metal-catalyzed C–H activations with allenes.
  • 加载中
    1. [1]

      (a) P. Gandeepan, T. Müller, D. Zell, et al., Chem. Rev. 119 (2019) 2192-2452;
      (b) Y. Hu, B. Zhou, C. Wang, Acc. Chem. Res. 51 (2018) 816-827;
      (c) S. Prakash, R. Kuppusamy, C.H. Cheng, ChemCatChem 10 (2018) 683-705;
      (d) Y. Xu, G. Dong, Chem. Sci. 9 (2018) 1424-1432;
      (e) J. He, M. Wasa, K.S.L. Chan, Q. Shao, J.Q. Yu, Chem. Rev. 117 (2017) 8754-8786;
      (f) J.R. Hummel, J.A. Boerth, J.A. Ellman, Chem. Rev. 117 (2017) 9163-9227;
      (g) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247-9301;
      (h) J. Jiao, K. Murakami, K. Itami, ACS Catal. 6 (2016) 610-633;
      (i) W. Liu, L. Ackermann, ACS Catal. 6 (2016) 3743-3752;
      (j) T. Gensch, M.N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 45 (2016) 2900-2936;
      (k) F. Wang, S. Yu, X. Li, Chem. Soc. Rev. 45 (2016) 6462-6477;
      (l) M. Gulías, J.L. Mascareñas, Angew. Chem. Int. Ed. 55 (2016) 11000-11019;
      (m) B. Ye, N. Cramer, Acc. Chem. Res. 48 (2015) 1308-1318;
      (n) O. Daugulis, J. Roane, L.D. Tran, Acc. Chem. Res. 48 (2015) 1053-1064;
      (o) B. Liu, F. Hu, B.F. Shi, ACS Catal. 48 (2015) 1863-1881;
      (p) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2014) 74-100;
      (q) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 52 (2013) 11726-11743;
      (r) X. Shang, Z.Q. Liu, Chem. Soc. Rev. 42 (2013) 3253-3260;
      (s) B.J. Li, Z.J. Shi, Chem. Soc. Rev. 41 (2012) 5588-5598;
      (t) L. McMurray, F. O'Hara, M.J. Gaunt, Chem. Soc. Rev. 40 (2011) 1885-1898;
      (u) C.S. Yeung, V.M. Dong, Chem. Rev. 111 (2011) 1215-1292;
      (v) T. Newhouse, P.S. Baran, Angew. Chem. Int. Ed. 50 (2011) 3362-3374;
      (w) T.W. Lyons, M.S. Sanford, Chem. Rev. 110 (2010) 1147-1169.

    2. [2]

      B.M. Trost, Science 254 (1991) 1471-1477.  doi: 10.1126/science.1962206

    3. [3]

      P.A. Wender, B.L. Miller, Nature 460 (2009) 197-201.  doi: 10.1038/460197a

    4. [4]

      (a) A. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 43 (2004) 1196-1216;
      (b) P. Rivera-Fuentes, F. Diederich, Angew. Chem. Int. Ed. 51 (2012) 2818-2828;
      (c) S. Yu, S. Ma, Angew. Chem. Int. Ed. 51 (2012) 3074-3112.

    5. [5]

      (a) B. Yang, Y. Qiu, J.E. Bäckvall, Acc. Chem. Res. 51 (2018) 1520-1531;
      (b) J. Ye, S. Ma, Acc. Chem. Res. 47 (2014) 989-1000;
      (c) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria, A. Simonneau, Chem. Rev. 111 (2011) 1954-1993;
      (d) S. Ma, Chem. Rev. 105 (2005) 2829-2872;
      (e) A.S.K. Hashmi, Angew. Chem. Int. Ed. 39 (2000) 3590-3593;
      (f) N. Krause, A.S. Hashmi, Modern Allene Chemistry, Wiley-VCH, Weinheim, 2004.

    6. [6]

      Y.J. Zhang, E. Skucas, M.J. Krische, Org. Lett. 11 (2009) 4248-4250.  doi: 10.1021/ol901759t

    7. [7]

      (a) Z. Fang, C. Fu, S. Ma, Chem. -Eur. J. 16 (2010) 3910-3913;
      (b) R. Zeng, C. Fu, S. Ma, J. Am. Chem. Soc. 134 (2012) 9597-9600;
      (c) R. Zeng, S. Wu, C. Fu, S. Ma, J. Am. Chem. Soc. 135 (2013) 18284-18287.

    8. [8]

      S. Nakanowatari, L. Ackermann, Chem. -Eur. J. 21 (2015) 16246-16251.  doi: 10.1002/chem.201502785

    9. [9]

      P. Gandeepan, P. Rajamalli, C.H. Cheng, Chem. -Eur. J. 21 (2015) 9198-9203.  doi: 10.1002/chem.201501106

    10. [10]

      (a) H. Wang, F. Glorius, Angew. Chem. Int. Ed. 51 (2012) 7318-7322;
      (b) H. Wang, B. Beiring, D.G. Yu, K.D. Collins, F. Glorius, Angew. Chem. Int. Ed. 52 (2013) 12430-12434.

    11. [11]

      (a) D.N. Tran, N. Cramer, Angew. Chem. Int. Ed. 49 (2010) 8181-8184;
      (b) D.N. Tran, N. Cramer, Angew. Chem. Int. Ed. 52 (2013) 10630-10634;
      (c) B. Ye, N. Cramer, J. Am. Chem. Soc. 135 (2013) 636-639.

    12. [12]

      (a) T. Lan, L. Wang, Y. Rao, Org. Lett. 19 (2017) 972-975;
      (b) T. Li, C. Zhang, Y. Tan, W. Pan, Y. Rao, Org. Chem. Front. 4 (2017) 204-209;
      (c) X. Yao, L. Jin, Y. Rao, Asian J. Org. Chem. 6 (2017) 825-830.

    13. [13]

      (a) Y. Kuninobu, P. Yu, K. Takai, Org. Lett. 12 (2010) 4274-4276;
      (b) X.F. Xia, Y.Q. Wang, L.L. Zhang, et al., Chem.-Eur. J. 20 (2014) 5087-5091;
      (c) T.J. Gong, W. Su, Z.J. Liu, et al., Org. Lett. 16 (2014) 330-333.

    14. [14]

      R. Kuppusamy, K. Muralirajan, C.H. Cheng, ACS Catal. 6 (2016) 3909-3913.  doi: 10.1021/acscatal.6b00978

    15. [15]

      R. Santhoshkumar, C.H. Cheng, Asian J. Org. Chem. 7 (2018) 1151-1163.  doi: 10.1002/ajoc.201800133

    16. [16]

      C. Wang, Synlett 24 (2013) 1606-1613.  doi: 10.1055/s-0033-1339299

    17. [17]

      S.Y. Chen, Q. Li, X.G. Liu, et al., ChemSusChem 10 (2017) 2360-2364.  doi: 10.1002/cssc.201700452

    18. [18]

      S.Y. Chen, Q. Li, H. Wang, J. Org. Chem. 82 (2017) 11173-11181.  doi: 10.1021/acs.joc.7b02220

    19. [19]

      C. Wang, A. Wang, M. Rueping, Angew. Chem. Int. Ed. 56 (2017) 9935-9938.  doi: 10.1002/anie.201704682

    20. [20]

      S.Y. Chen, X.L. Han, J.Q. Wu, et al., Angew. Chem. Int. Ed. 56 (2017) 9939-9943.  doi: 10.1002/anie.201704952

    21. [21]

      (a) Y. Kuninobu, Y. Nishina, T. Takeuchi, K. Takai, Angew. Chem. Int. Ed. 46 (2007) 6518-6520;
      (b) B. Zhou, Y. Hu, C. Wang, Angew. Chem. Int. Ed. 54 (2015) 13659-13663;
      (c) W. Liu, J. Bang, Y. Zhang, L. Ackermann, Angew. Chem. Int. Ed. 54 (2015) 14137-14140;
      (d) Y.F. Liang, L. Massignan, W. Liu, L. Ackermann, Chem. -Eur. J. 22 (2016) 14856-14859;
      (e) S. Sueki, Z. Wang, Y. Kuninobu, Org. Lett. 18 (2016) 304-307;
      (f) B. Zhou, Y. Hu, T. Liu, C. Wang, Nat. Commun. 8 (2017) 1169-1177.

    22. [22]

      C. Lei, L. Peng, K. Ding, Adv. Synth. Catal. 360 (2018) 2952-2958.  doi: 10.1002/adsc.201800465

    23. [23]

      C. Zhu, J.L. Schwarz, S. Cembellín, S. Greβies, F. Glorius, Angew. Chem. Int. Ed. 57 (2018) 437-441.  doi: 10.1002/anie.201710835

    24. [24]

      (a) P. Wang, L. Deng, Chin. J. Chem. 36 (2018) 1222-1240;
      (b) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 117 (2017) 9086-9139;
      (c) F. Jia, Z. Li, Org. Chem. Front. 1 (2014) 194-214.

    25. [25]

      J. Mo, T. Müller, J.C.A. Oliveira, L. Ackermann, Angew. Chem. Int. Ed. 57 (2018) 7719-7723.  doi: 10.1002/anie.201801324

    26. [26]

      (a) T. Yoshino, S. Matsunaga, Adv. Synth. Catal. 359 (2017) 1245-1262;
      (b) S. Wang, S.Y. Chen, Chem. Commun. 53 (2017) 3165-3180.

    27. [27]

      S. Nakanowatari, R. Mei, M. Feldt, L. Ackermann, ACS Catal. 7 (2017) 2511-2515.  doi: 10.1021/acscatal.7b00207

    28. [28]

      J.P. Wan, L. Gan, Y. Liu, Org. Biomol. Chem. 15 (2017) 9031-9043.  doi: 10.1039/C7OB02011B

    29. [29]

      J.A. Boerth, J.A. Ellman, Angew. Chem. Int. Ed. 56 (2017) 9976-9980.  doi: 10.1002/anie.201705817

    30. [30]

      N. Thrimurtulu, A. Dey, D. Maiti, C.M.R. Volla, Angew. Chem. Int. Ed. 55 (2016) 12361-12365.  doi: 10.1002/anie.201604956

    31. [31]

      R. Boobalan, R. Kuppusamy, R. Santhoshkumar, P. Gandeepan, C.H. Cheng, ChemCatChem 9 (2017) 273-277.  doi: 10.1002/cctc.201601190

    32. [32]

      N. Thrimurtulu, R. Nallagonda, C.M.R. Volla, Chem. Commun. 53 (2017) 1872-1875.  doi: 10.1039/C6CC08622E

    33. [33]

      R. Kuppusamy, R. Santhoshkumar, R. Boobalan, H.R. Wu, C.C. Cheng, ACS Catal. 8 (2018) 1880-1883.  doi: 10.1021/acscatal.7b04087

    34. [34]

      R. Boobalan, R. Santhoshkumar, C.H. Cheng, Adv. Synth. Catal. 361 (2019) 1140-1145.  doi: 10.1002/adsc.201801335

    35. [35]

      S. Zhai, S. Qiu, X. Chen, et al., ACS Catal. 8 (2018) 6645-6649.  doi: 10.1021/acscatal.8b01720

    36. [36]

      T.H. Meyer, J.C.A. Oliveira, S.C.S. Sau, N.W.J. Ang, L. Ackermann, ACS Catal. 8 (2018) 9140-9147.  doi: 10.1021/acscatal.8b03066

    37. [37]

      S. Nakanowatari, T. Müller, J.C.A. Oliveira, L. Ackermann, Angew. Chem. Int. Ed. 56 (2017) 15891-15895.  doi: 10.1002/anie.201709087

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    3. [3]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    4. [4]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    5. [5]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    9. [9]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    10. [10]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    11. [11]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    12. [12]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    13. [13]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    14. [14]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    15. [15]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    16. [16]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    19. [19]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    20. [20]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

Metrics
  • PDF Downloads(11)
  • Abstract views(635)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return