Citation: Zhao Ling-Ling, Han Ying, Yan Chao-Guo. Construction of [1]rotaxanes with pillar[5]arene as the wheel and terpyridine as the stopper[J]. Chinese Chemical Letters, ;2020, 31(1): 81-83. doi: 10.1016/j.cclet.2019.04.024
-
The condensation reaction of ω-aminoalkyleneamide-functionalized pillar[5]arenes with 2-(4-([2, 2':6', 2''-terpyridin]-4'-yl)phenoxy)acetic acid or 4-(4-([2, 2':6', 2''-terpyridin]-4'-yl)phenoxy)butanoic acid in dry chloroform at room temperature under the catalysis of HOBT/EDCl resulted in novel pillar[5]arene diamido-bridged terpyridine derivatives. 1H NMR and 2D NOESY spectra clearly indicated that the interesting [1]rotaxanes were formed by longer alkylene such as propylene, butylene and hexylenediamido chains threading into the cavity of the pillar[5]arene and with larger terpyridine acting as the stopper. However, the shorter ethylenediamido chain only exists outer of cavity of pillar[5]arene and the molecule exist on free form.
-
Keywords:
- Pillar Rotaxane,
- Amidation,
- Interlocked molecule
-
-
[1]
A.C. Fahrenbach, C.J. Bruns, D. Cao, et al., Acc. Chem. Res. 45(2012) 1581-1592. doi: 10.1021/ar3000629
-
[2]
M. Xue, Y. Yang, X.D. Chi, et al., Chem. Rev. 115(2015) 7398-7501. doi: 10.1021/cr5005869
-
[3]
G.T. Spence, P.D. Beer, Acc. Chem. Res. 46(2013) 571-586. doi: 10.1021/ar300264n
-
[4]
B. Lewandowski, G. De Bo, J.W. Ward, et al., Science 339(2013) 189-193. doi: 10.1126/science.1229753
-
[5]
H. Li, X. Li, H. Agren, et al., Org. Lett. 16(2014) 4940-4943. doi: 10.1021/ol502466x
-
[6]
S.H. Li, H.Y. Zhang, X.F. Xu, et al., Nat. Commun. 6(2015) 7590-7596. doi: 10.1038/ncomms8590
-
[7]
M. Xue, Y. Yang, X. Chi, et al., Acc. Chem. Res. 45(2012) 1294-1308. doi: 10.1021/ar2003418
-
[8]
Z.C. Liu, S.K.M. Nalluri, J.F. Stoddart, Chem. Soc. Rev. 46(2017) 2459-2478. doi: 10.1039/C7CS00185A
-
[9]
Y.L. Wang, C.H. Ping, C.J. Li, Chem. Commun. 52(2016) 9858-9872. doi: 10.1039/C6CC03999E
-
[10]
S.Y. Sun, M. Geng, L. Huang, et al., Chem. Commun. 54(2018) 13006-13009. doi: 10.1039/C8CC07658H
-
[11]
Y. Sun, W.X. Fu, C.Y. Chen, et al., Chem. Commun. 53(2017) 3725-3728. doi: 10.1039/C7CC00291B
-
[12]
B. Li, Z. Meng, Q.Q. Li, et al., Chem. Sci. 8(2017) 4458-4464. doi: 10.1039/C7SC01438D
-
[13]
Y. Yao, X.J. Wei, Y. Cai, et al., J. Colloid Interf. Sci. 525(2018) 48-53. doi: 10.1016/j.jcis.2018.04.034
-
[14]
S.Y. Sun, D. Lu, Q. Huang, et al., J. Colloid Interf. Sci. 533(2019) 42-46. doi: 10.1016/j.jcis.2018.08.051
-
[15]
T. Ogoshi, K. Demachi, K. Kitajima, et al., Chem. Commun. 47(2011) 7164-7166. doi: 10.1039/c1cc12333e
-
[16]
Y. Chen, D. Cao, L. Wang, et al., Chem. -Eur. J. 19(2013) 7064-7070. doi: 10.1002/chem.201204628
-
[17]
B.Y. Xia, M. Xue, Chem. Commun. 50(2014) 1021-1023. doi: 10.1039/C3CC48014C
-
[18]
M.F. Ni, X.Y. Hu, J.L. Jiang, et al., Chem. Commun. 50(2014) 1317-1319. doi: 10.1039/C3CC47823H
-
[19]
Y.F. Guan, P.Y. Liu, C. Deng, et al., Org. Biomol. Chem. 12(2014) 1079-1089. doi: 10.1039/c3ob42044b
-
[20]
X. Wu, M.F. Ni, W. Xia, et al., Org. Chem. Front. 2(2015) 1013-1017. doi: 10.1039/C5QO00159E
-
[21]
X. Wu, L. Gao, J.Z. Sun, et al., Chin. Chem. Lett. 27(2016) 1655-1660. doi: 10.1016/j.cclet.2016.05.004
-
[22]
C.L. Sun, J.F. Xu, Y.Z. Chen, et al., Chin. Chem. Lett. 26(2015) 843-846. doi: 10.1016/j.cclet.2015.05.030
-
[23]
M. Cheng, Q. Wang, Y.H. Cao, et al., Tetrahedron Lett. 57(2016) 4133-4137. doi: 10.1016/j.tetlet.2016.07.038
-
[24]
X.S. Du, C.Y. Wang, Q. Jia, et al., Chem. Commun. 53(2017) 5326-5329. doi: 10.1039/C7CC02364B
-
[25]
T.X. Xiao, L. Zhou, L.X. Xu, et al., Chin. Chem. Lett. 30(2019) 271-276. doi: 10.1016/j.cclet.2018.05.039
-
[26]
M.J. Wang, X.S. Du, H.S. Tian, et al., Chin. Chem. Lett. 30(2019) 345-348. doi: 10.1016/j.cclet.2018.10.014
-
[27]
Y. Han, G.F. Huo, J. Sun, et al., Sci. Rep. 6(2016) 28748. doi: 10.1038/srep28748
-
[28]
G.F. Huo, Y. Han, J. Sun, et al., J. Incl. Phenom. Macrocycl. Chem. 86(2016) 231-240. doi: 10.1007/s10847-016-0652-x
-
[29]
Y. Han, G.F. Huo, J. Sun, et al., Supramol. Chem. 29(2017) 547-552. doi: 10.1080/10610278.2017.1287367
-
[30]
S. Jiang, Y. Han, J. Sun, et al., Tetrahedron 73(2017) 5107-5114. doi: 10.1016/j.tet.2017.07.001
-
[31]
C.B. Yin, Y. Han, G.F. Huo, et al., Chin. Chem. Lett. 28(2017) 431-436. doi: 10.1016/j.cclet.2016.09.008
-
[32]
S. Jiang, Y. Han, M. Cheng, et al., New J. Chem. 42(2018) 7603-7606. doi: 10.1039/C7NJ05192A
-
[33]
Y. Han, L.M. Xu, C.Y. Nie, et al., Beilstein J. Org. Chem. 14(2018) 1660-1667. doi: 10.3762/bjoc.14.142
-
[34]
S. Jiang, Y. Han, L.L. Zhao, et al., Supramol. Chem. 30(2018) 642-647. doi: 10.1080/10610278.2018.1427238
-
[35]
L.Q. Shangguan, H. Xing, J.H. Mondal, et al., Chem. Commun. 53(2017) 889-892. doi: 10.1039/C6CC08336F
-
[36]
B.B. Shi, K.C. Jie, Y.J. Zhou, et al., Chem. Commun. 53(2017) 4503-4506.
-
[37]
K.C. Jie, Y.J. Zhou, B.B. Shi, et al., Chem. Commun. 51(2015) 8461-8464. doi: 10.1039/C5CC00976F
-
[1]
-
-
[1]
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
-
[2]
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
-
[3]
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
-
[4]
Lei Zhou , Youjun Zhou , Lizhen Fang , Yiqiao Bai , Yujia Meng , Liang Li , Jie Yang , Yong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509
-
[5]
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
-
[6]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[7]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[8]
Jin Wang , Xiaoyan Pan , Junyu Zhang , Qingqing Zhang , Yanchen Li , Weiwei Guo , Jie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187
-
[9]
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276
-
[10]
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
-
[11]
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
-
[12]
Xinyi Luo , Ke Wang , Yingying Xue , Xiaobao Cao , Jianhua Zhou , Jiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924
-
[13]
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
-
[14]
Yunjie Dang , Yanru Feng , Xiao Chen , Chaoxing He , Shujie Wei , Dingyang Liu , Jinlong Qi , Huaxing Zhang , Shaokun Yang , Zhiyun Niu , Bai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660
-
[1]
Metrics
- PDF Downloads(11)
- Abstract views(860)
- HTML views(67)