Citation: Peng Lifen, Hu Zhifang, Tang Zilong, Jiao Yinchun, Xu Xinhua. Recent progress in transition metal catalyzed cross coupling of nitroarenes[J]. Chinese Chemical Letters, ;2019, 30(8): 1481-1487. doi: 10.1016/j.cclet.2019.04.008 shu

Recent progress in transition metal catalyzed cross coupling of nitroarenes

    * Corresponding authors.
    E-mail addresses: 1060137@hnust.edu.cn (L. Peng), zltang@hnust.edu.cn (Z. Tang)
  • Received Date: 27 January 2019
    Revised Date: 22 March 2019
    Accepted Date: 1 April 2019
    Available Online: 3 August 2019

Figures(14)

  • In this review, the recent development in transition metal catalyzed cross coupling of nitroarenes was highlighted. Firstly, development of transition metal catalyzed cross coupling was simply introduced. After presenting the advantages of nitroarenes, transition metal catalyzed cross coupling using nitroarenes as electrophilic coupling partners was classified and introduced in detail. Based on different chemical bonds such as C–O, C–S, C–C and C–N bonds constructed, different kinds cross coupling of nitroarenes would be highlighted and the plausible reaction mechanism would be presented if available.
  • 加载中
    1. [1]

      (a) N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457-2483;
      (b) B. Zhang, R. Breslow, J. Am. Chem. Soc. 119 (1997) 1676-1681;
      (c) Ei. Negishi, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 1998;
      (d) A. Minato, K. Suzuki, K. Tamao, M. Kumada, J. Chem. Soc. Chem. Commun. 8 (1984) 511-513;
      (e) A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 41 (2002) 4176-4211;
      (f) A.R. Chinchilla, C. Nájera, Chem. Rev. 107 (2007) 874-922;
      (g) L.F. Peng, S.W. Zhang, B.H. Wang, et al., Chin. J. Org. Chem. 38 (2018) 519-525.

    2. [2]

      (a) X. Li, J.W. Han, H.N.C. Wong, Asian J. Org. Chem. 5 (2016) 74-81;
      (b) K.C. Nicolaou, P.G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 44 (2005) 4442-4489;
      (c) L.F. Peng, B.H. Wang, M. Wang, et al., J. Chem. Res. 42 (2018) 235-238;
      (d) L.F. Peng, J.Y. Lei, L. Wu, et al., J. Chem. Res. 42 (2018) 271-273;
      (e) L.F. Peng, C. Peng, M. Wang, et al., Chin. J. Org. Chem. 38 (2018) 3048-3055;
      (f) R. Jana, T.P. Pathak, M.S. Sigman, Chem. Rev. 111 (2011) 1417-1492.

    3. [3]

      (a) J. Magano, J.R. Dunetz, Chem. Rev. 111 (2011) 2177-2250;
      (b) T.E. Barder, S.D. Walker, J.R. Martinelli, S.L. Buchwald, J. Am. Chem. Soc. 127 (2005) 4685-4696;
      (c) S. Abbas, L. Ferris, A.K. Norton, Org. Process Res. Dev. 12 (2008) 202-212;
      (d) S. Yu, A. Haight, B. Kotecki, et al., J. Org. Chem. 74 (2009) 9539-9542;
      (e) J.Q. Wan, Y. Xia, Y. Liu, et al., J. Med. Chem. 52 (2009) 1144-1155.

    4. [4]

      (a) M.S. Karatholuvhu, A. Sinclair, A.F. Newton, et al., J. Am. Chem. Soc. 128 (2006) 12656-12657;
      (b) Q. Su, L.A. Dakin, J.S. Panek, J. Org. Chem. 72 (2007) 2-24;
      (c) V.V. Vintonyak, B. Kunze, F. Sasse, M.E. Maier, Chem.-Eur. J.14 (2008) 11132-11140;
      (d) G. Dyker, D. Hildebrandt, J. Org. Chem. 70 (2005) 6093-6096.

    5. [5]

      (a) C.K. Hau, S.S.Y. Chui, W. Lu, Chem. Sci. 2 (2011) 1068-1075;
      (b) C.L. Deng, X.D. Xiong, D.T.W. Chik, Chem.-Asian J. 10 (2015) 2342-234;
      (c) Y. Yamaguchi, T. Ochi, T. Wakamiya, Y. Matsubara, Z. Yoshida, Org. Lett. 8 (2006) 717-720;
      (d) J.N. Wilson, M. Josowicz, Y. Wang, U.H.F. Bunz, Chem. Commun. (2003) 2982-2983;
      (e) H. Sugiura, Y. Nigorikawa, Y. Saiki, K. Nakamura, M. Yamaguchi, J. Am. Chem. Soc. 126 (2004) 14858-14864;
      (f) T.L. Wu, H.H. Chou, P.Y. Huang, C.H. Cheng, R.S. Liu, J. Org. Chem. 79 (2014) 267-274;
      (g) J. Kim, A.R. Han, J. Hong, et al., Chem. Mater. 26 (2014) 4933-4942;
      (h) P. Deria, C.D. Von Bargen, J.H. Olivier, et al., J. Am. Chem. Soc. 135 (2013) 16220-16234;
      (i) Z.Y. Yao, M. Zhang, H. Wu, et al., J. Am. Chem. Soc. 137 (2015) 3799-3802.

    6. [6]

      (a) A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 41 (2002) 4176-4211;
      (b) P. Fitton, E.A. Rick, J. Organomet. Chem. 28 (1971) 287-291;
      (c) R. Stürmer, Angew. Chem. 111 (1999) 3509-3510.

    7. [7]

      (a) V.V. Grushin, H. Alper, Chem. Rev. 94 (1994) 1047-1062;
      (b) R. Stürmer, Angew. Chem. Int. Ed. 38 (1999) 3307-3308;
      (c) H.U. Blaser, E. Schmidt, Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2004;
      (d) S.L. Buchwald, C. Mauger, G. Mignani, U. Scholz, Adv. Synth. Catal. 348 (2006) 23-39;
      (e) B. Schlummer, U. Scholz, Adv. Synth. Catal. 346 (2004) 1599-1626;
      (f) H.U. Blaser, A. Indolese, F. Naud, U. Nettekoven, A. Schnyder, Adv. Synth. Catal. 346 (2004) 1583-1598;
      (g) C. Torborg, M. Beller, Adv. Synth. Catal. 351 (2009) 3027-3043;
      (h) F. Naso, F. Babudri, G.M. Farinola, Pure Appl. Chem. 71 (1999) 1485-1492;
      (i) R.N. Yi, Z.J. Wang, Z.W. Liang, et al., Appl. Organomet. Chem. 33 (2019) e4917-e4923.

    8. [8]

      (a) C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51 (2012) 5062-5085;
      (b) C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. 124 (2012) 5150-5174.

    9. [9]

      (a) Z.H. Jia, Liu Q, X.S. Peng, H.N.C. Wong, Nat. Commun. 7 (2016) 10614-10620;
      (b) C. Han, S.L. Buchwald, J. Am. Chem. Soc. 131 (2009) 7532-7533;
      (c) B.D. Sherry, A. Fürstner, Acc. Chem. Res. 41 (2008) 1500-1511;
      (d) S.M. Neumann, J.K. Kochi, J. Org. Chem. 40 (1975) 599-606;
      (e) A. Fürstner, A. Leitner, Angew. Chem. Int. Ed. 41 (2002) 609-612;
      (f) B.J. Li, L. Xu, Z.H. Wu, et al., J. Am. Chem. Soc. 131 (2009) 14656-14657;
      (g) C.S. Yeung, V.M. Dong, J. Am. Chem. Soc. 130 (2008) 7826-7827;
      (h) J. Zhou, G.C. Fu, J. Am. Chem. Soc. 125 (2003) 14726-14727;
      (i) K. Tamao, Y. Kiso, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 94 (1972) 9268-9269.

    10. [10]

      (a) D.W. Old, J.P. Wolfe, S.L. Buchwald, J. Am. Chem. Soc.120 (1998) 9722-9723;
      (b) J.P. Wolfe, R.A. Singer, B.H. Yang, S.L. Buchwald, J. Am. Chem. Soc.121 (1999) 9550-9561;
      (c) M. Schomaker, T.J. Delia, J. Org. Chem. 66 (2001) 7125-7128;
      (d) A.J. Cocuzza, D.R. Chidester, S. Culp, L. Fitzgerald, P. Gilligan, Bioorg. Med. Chem. Lett. 9 (1999) 1063-1066;
      (e) J.P. Wolfe, S.L. Buchwald, Angew. Chem. 111 (1999) 2570-2573.

    11. [11]

      (a) J.M. Lovell, J.A. Joule, Synth. Commun. 27 (1997) 1209-1215;
      (b) A. Suzuki, J. Organomet. Chem. 576 (1999) 147-168;
      (c) G.B. Smith, G.C. Dezeny, D.L. Hughes, A.O. King, T.R. Verhoeven, J. Org. Chem. 59 (1994) 8151-8156.

    12. [12]

      J. Zhang, J. Chen, M. Liu, X. Zheng, J. Ding, H. Wu, Green Chem. 14 (2012) 912-916.  doi: 10.1039/c2gc16539b

    13. [13]

      (a) K. Itami, M. Mineno, N. Muraoka, J.I. Yoshida, J. Am. Chem. Soc. 126 (2004) 11778-11779;
      (b) L.W. Qian, M. Sun, J. Dong, Q. Xu, Y. Zhou, S.F. Yin, J. Org. Chem. 82 (2017) 6764-6769;
      (c) K. Itami, D. Yamazaki, J.I. Yoshida, J. Am. Chem. Soc.126 (2004) 5396-15397;
      (d) S.R. Dubbaka, P. Vogel, Angew. Chem. Int. Ed. 44 (2005) 7674-7684;
      (e) S.R. Dubbaka, P. Vogel, Tetrahedron Lett. 47 (2006) 3345-3348;
      (f) P. Leowanawat, N. Zhang, A.M. Resmerita, B.M. Rosen, V. Percec, J. Org. Chem. 76 (2011) 9946-9955.

    14. [14]

      (a) D. Gärtner, A.L. Stein, S. Grupe, J. Arp, A.J. Wangelin, Angew. Chem. Int. Ed. 54 (2015) 10545-10549;
      (b) M.R. Harris, L.E. Hanna, M.A. Greene, C.E. Moore, E.R. Jarvo, J. Am. Chem. Soc. 135 (2013) 3303-3306;
      (c) K.W. Quasdorf, X. Tian, N.K. Garg, J. Am. Chem. Soc. 130 (2008) 14422-14423.

    15. [15]

      (a) G.G. Meng, S.C. Shi, M. Szostak, ACS Catal. 6 (2016) 7335-7339;
      (b) K.R. Buszek, N. Brown, Org. Lett. 9 (2007) 707-710;
      (c) M. Barbero, S. Dughera, Tetrahedron 74 (2018) 5758-5769;
      (d) Y. Bourne-Branchu, C. Gosmini, G. Danoun, Chem.-Eur. J. 25 (2019) 2663-2674.

    16. [16]

      (a) H. Li, J. Liu, C.L. Sun, B.J. Li, Z.J. Shi, Org. Lett. 13 (2011) 276-279;
      (b) S. Tang, L. Zeng, A.W. Lei, J. Am. Chem. Soc. 140 (2018) 13128-13135;
      (c) Q. Zhang, Y. Liu, T. Wang, et al., J. Am. Chem. Soc. 140 (2018) 5579-5587;
      (d) M. Shang, H.L. Wang, S.Z. Sun, H.X. Dai, J.Q. Yu, J. Am. Chem. Soc. 136 (2014) 11590-11593.

    17. [17]

      G. Booth, Nitro Compounds, Aromatic; Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, New York, 2012.

    18. [18]

      Y. Yang, Angew. Chem. Int. Ed. 56 (2017) 15802-15804.  doi: 10.1002/anie.201708940

    19. [19]

      X.W. Zheng, J.C. Ding, J.X. Chen, et al., Org. Lett. 13 (2011) 1726-1729.  doi: 10.1021/ol200251x

    20. [20]

      J.L. Zhang, J.X. Chen, M.C. Liu, et al., Green Chem. 14 (2012) 912-916.  doi: 10.1039/c2gc16539b

    21. [21]

      D.P. Peng, A.J. Yu, H.L. Wang, Y.J. Wu, J.B. Chang, Tetrahedron 69 (2013) 6884-6889.  doi: 10.1016/j.tet.2013.05.112

    22. [22]

      H.L. Wang, A.J. Yu, A.J. Cao, J.B. Chang, Y.J. Wu, Appl. Organomet. Chem. 27 (2013) 611-614.

    23. [23]

      T. Begum, M. Mondal, M.P. Borpuzari, et al., Eur. J. Org. Chem. (2017) 3244-3248.

    24. [24]

      S.S. Bahekar, A.P. Sarkate, V.M. Wadhai, P.S. Wakte, D.B. Shinde, Catal. Commun. 41 (2013) 123-125.  doi: 10.1016/j.catcom.2013.07.019

    25. [25]

      H. Tian, A.J. Cao, L.J. Qiao, et al., Tetrahedron 70 (2014) 9107-9112.  doi: 10.1016/j.tet.2014.09.087

    26. [26]

      A. Rostami, A. Rostami, A. Ghaderi, J. Org. Chem. 80 (2015) 8694-8704.  doi: 10.1021/acs.joc.5b01248

    27. [27]

      B.P. Fors, S.L. Buchwald, J. Am. Chem. Soc. 131 (2009) 12898-12899.  doi: 10.1021/ja905768k

    28. [28]

      M.R. Yadav, M. Nagaoka, M. Kashihara, et al., J. Am. Chem. Soc.139 (2017) 9423-9426.  doi: 10.1021/jacs.7b03159

    29. [29]

      F. Inoue, M. Kashihara, M.R. Yadav, Y. Nakao, Angew. Chem. Int. Ed. 56 (2017) 13307-13309.  doi: 10.1002/anie.201706982

  • 加载中
    1. [1]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    2. [2]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    3. [3]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    4. [4]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    5. [5]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    6. [6]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    7. [7]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    8. [8]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    9. [9]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    10. [10]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    11. [11]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    12. [12]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    13. [13]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    14. [14]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    15. [15]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    18. [18]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    19. [19]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    20. [20]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

Metrics
  • PDF Downloads(6)
  • Abstract views(601)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return