Citation: Wu Yi-Peng, Yan Meng, Gao Zhong-Zheng, Hou Jun-Li, Wang Hui, Zhang Dan-Wei, Zhang Junliang, Li Zhan-Ting. Ruthenium(Ⅱ)-cored supramolecular organic framework-mediated recyclable visible light photoreduction of azides to amines and cascade formation of lactams[J]. Chinese Chemical Letters, ;2019, 30(7): 1383-1386. doi: 10.1016/j.cclet.2019.03.056 shu

Ruthenium(Ⅱ)-cored supramolecular organic framework-mediated recyclable visible light photoreduction of azides to amines and cascade formation of lactams

Figures(1)

  • Ru(bpy)3]2+-cored supramolecular organic framework SMOF-1, assembled from a [Ru(bpy)3]2+-derived hexaarmed molecule and cucurbit[8]uril, has been demonstrated to heterogeneously catalyze visible light-induced reduction of phenyl, benzyl, 2-phenylethyl and 3-phenylpropyl azides in acetonitrile to produce the corresponding amines in good to high yields. For the last two kinds of azides that bear a CO2Me group at the para-position of the benzene ring, cascade reactions take place to generate the corresponding lactams in high yields. Compared with homogeneous control [Ru(bpy)3]Cl2, SMOF-1 exhibits remarkably increased photocatalysis activity as a result of synergistic effect of the [Ru(bpy)3]2+ units that form cubic cages to host the azide molecules and related intermediates. Moreover, SMOF-1 displays high recyclability and considerable photocatalysis activity after 3 to 12 runs.
  • 加载中
    1. [1]

      C.R.J. Stephenson, T.P. Yoon, D.W.C. MacMillan (Eds.), Visible Light Photocatalysis in Organic Chemistry, Wiley-VCH, Weinheim, 2018, p. 456.

    2. [2]

      (a) J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 40 (2011) 102-113;
      (b) J. Xuan, W.J. Xiao, Angew. Chem. Int. Ed. 51 (2012) 6828-6838;
      (c) Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 11 (2013) 2387-2403;
      (d) L. Zhang, E. Meggers, Acc. Chem. Res. 50 (2017) 320-330;
      (e) Y. Guo, M.W. Huang, X.L. Fu, et al., Chin. Chem. Lett. 28 (2017) 719-728;
      (f) B. Yang, X. Ren, T. Shen, Z. Lu, Chin. J. Chem. 36 (2018) 1017-1023;
      (g) B. Chen, L.Z. Wu, C.H. Tung, Acc. Chem. Res. 51 (2018) 2512-2523;
      (h) W. Yu, Y. Ouyang, X.H. Xu, F.L. Qing, Chin. J. Chem. 36 (2018) 1024-1030;
      (i) D. Wang, L. Zhang, S. Luo, Chin. J. Chem. 36 (2018) 311-320;
      (j) W.J. Zhou, Y.H. Zhang, Y.Y. Gui, L. Sun, D.G. Yu, Synthesis 50 (2018) 3359-3378.

    3. [3]

      (a) B. König, Eur. J. Org. Chem. (2017) 1979-1981;
      (b) J.J. Zhong, Q.Y. Meng, B. Chen, C.H. Tung, L.Z. Wu, Acta Chim. Sin. 75 (2017) 34-40;
      (c) J. Wang, B. Li, L.C. Liu, et al., Sci. China Chem. 61 (2018) 1594-1599;
      (d) T. Shao, Z. Jiang, Acta Chim. Sin. 75 (2017) 70-73.

    4. [4]

      (a) J.J. Zhang, Y.B. Cheng, X.H. Duan, Chin. J. Chem. 35 (2017) 311-315;
      (b) P. Pei, F. Zhang, H. Yi, A. Lei, Acta Chim. Sin. 75 (2017) 15-21;
      (c) M. Liu, Y. Li, L. Yu, Q. Xu, X. Jiang, Sci. China Chem. 61 (2018) 294-299;
      (d) M. Zhang, R. Ruzi, N. Li, J. Xie, C. Zhu, Org. Chem. Front. 5 (2018) 749-752;
      (e) Y. Chen, L.Q. Lu, D.G. Yu, C.J. Zhu, W.J. Xiao, Sci. China Chem. 62 (2019) 24-57.

    5. [5]

      (a) F. Teply, Coll. Czech. Chem. Commun. 76 (2011) 859-917;
      (b) S. Maity, N. Zheng, Synlett 23 (2012) 1851-1856;
      (c) Y. Yuan, W. Dong, X. Gao, et al., Chin. J. Chem. 36 (2018) 1035-1040;
      (d) B. Gou, C. Yang, L. Zhang, W. Xia, Acta Chim. Sin. 75 (2017) 66-69;
      (e) D. Wang, L. Zhang, S. Luo, Acta Chim. Sin. 75 (2017) 22-33;
      (f) R. Mao, L. Sun, Y.S. Wang, et al., Chin. Chem. Lett. 29 (2018) 61-64;
      (g) J. Zhang, Y. Chen, Acta Chim. Sin. 75 (2017) 41-48.

    6. [6]

      (a) X. Yu, S.M. Cohen, Chem. Commun. 51 (2015) 9880-9883;
      (b) J.S. Qin, S. Yuan, C. Lollar, et al., Chem. Commun. 54 (2018) 4231-4249.

    7. [7]

      Y.P. Wu, B. Yang, J. Tian, et al., Chem. Commun. 53 (2017) 13367-13370.  doi: 10.1039/C7CC08824H

    8. [8]

      (a) H. Wang, D.W. Zhang, X. Zhao, Z.T. Li, Acta Chim. Sin. 73 (2015) 471-479;
      (b) J. Tian, T.Y. Zhou, S.C. Zhang, et al., Nat. Commun. 5 (2014) 5574;
      (c) J. Tian, L. Chen, D.W. Zhang, Y. Liu, Z.T. Li, Chem. Commun. 52 (2016) 6351-6362;
      (d) H. Wang, D.W. Zhang, Z.T. Li, Acta Polym. Sin. (2017) 19-26;
      (e) J. Tian, H. Wang, D.W. Zhang, Y. Liu, Z.T. Li, Sci. Rev. 4 (2017) 426-436;
      (f) J. Tian, C. Yao, W.L. Yang, et al., Chin. Chem. Lett. 28 (2017) 798-806;
      (g) C. Yao, J. Tian, H. Wang, et al., Chin. Chem. Lett. 28 (2017) 893-899;
      (h) Y. Chen, F. Huang, Z.T. Li, Y. Liu, Sci. China Chem. 61 (2018) 979-992;
      (i) X.F. Li, S.B. Yu, B. Yang, et al., Sci. China Chem. 61 (2018) 830-835;
      (j) S.B. Yu, Q. Qi, B. Yang, et al., Small 14 (2018) 1801037.

    9. [9]

      J. Tian, Z.Y. Xu, D.W. Zhang, et al., Nat. Commun. 7 (2016) 11580.  doi: 10.1038/ncomms11580

    10. [10]

      S.A. Lawrence, Amines: Synthesis, Properties and Applications, Cambridge University, Cambridge, 2005, p. 382.

    11. [11]

      (a) Y. Chen, A.S. Kamlet, J.B. Steinman, D.R. Liu, Nat. Chem. 3 (2011) 146-153;
      (b) M. Rothlingshofer, K. Gorska, N. Winssinger, Org. Lett. 14 (2012) 482-485;
      (c) X.D. Xia, J. Xuan, Q. Wang, et al., Adv. Synth. Catal. 356 (2014) 2807-2812.

    12. [12]

      T. Maji, A. Karmakar, O. Reiser, J. Org. Chem. 76 (2011) 736-739.  doi: 10.1021/jo102239x

    13. [13]

      J.B. Borak, D.E. Falvey, J. Org. Chem. 74 (2009) 3894-3899.  doi: 10.1021/jo900182x

    14. [14]

      J.J. Powers, D.A. Favor, T. Rankin, et al., Tetrahedron Lett. 50 (2009) 1267-1269.  doi: 10.1016/j.tetlet.2008.12.099

    15. [15]

      J. Wrobel, A. Dietrich, B.J. Gorham, K. Sestanj, J. Org. Chem. 55 (1990) 2694-2702.  doi: 10.1021/jo00296a028

    16. [16]

      T. Janecki, Natural Lactones and Lactams: Synthesis, Occurrence and Biological Activity, Wiley-VCH, Weinheim, 2018, p. 456.

  • 加载中
    1. [1]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    2. [2]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    3. [3]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    4. [4]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    7. [7]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    8. [8]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    9. [9]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    10. [10]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    11. [11]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    12. [12]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    15. [15]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    16. [16]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    17. [17]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    18. [18]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    19. [19]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    20. [20]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

Metrics
  • PDF Downloads(7)
  • Abstract views(611)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return