Low-temperature plasma technology for electrocatalysis
*Corresponding authors.
E-mail addresses: yuqin_zou@hnu.edu.cn (Y. Zou), shuangyinwang@hnu.edu.cn(S. Wang)
Citation: Wang Dongdong, Zou Yuqin, Tao Li, Zhang Yiqiong, Liu Zhijuan, Du Shiqian, Zang Shuangquan, Wang Shuangyin. Low-temperature plasma technology for electrocatalysis[J]. Chinese Chemical Letters, ;2019, 30(4): 826-838. doi: 10.1016/j.cclet.2019.03.051
B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Small 13(2017) 1700191.
doi: 10.1002/smll.v13.21
Y. Zheng, J. Wang, B. Yu, et al., Chem. Soc. Rev. 46(2017) 1427-1463.
doi: 10.1039/C6CS00403B
H. Liang, F. Ming, H.N. Alshareef, Adv. Energy Mater. 8(2018) 1801804.
doi: 10.1002/aenm.v8.29
Z.L. Wang, D. Xu, H.X. Zhong, et al., Sci. Adv. 1(2015) e1400035.
doi: 10.1126/sciadv.1400035
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44(2015) 2060-2086.
doi: 10.1039/C4CS00470A
Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, Chem. Soc. Rev. 43(2014) 7746-7786.
doi: 10.1039/C3CS60248F
Y. Zheng, W. Zhang, Y. Li, et al., Nano Energy 40(2017) 512-539.
doi: 10.1016/j.nanoen.2017.08.049
Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Acc. Chem. Res. 50(2017) 915-923.
doi: 10.1021/acs.accounts.6b00635
C. Li, H. Tan, J. Lin, et al., Nano Today 21(2018) 91-105.
doi: 10.1016/j.nantod.2018.06.005
Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruna, J. Am. Chem. Soc. 140(2018) 7248-7255.
doi: 10.1021/jacs.8b03365
Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 44(2015) 2168-2201.
doi: 10.1039/C4CS00484A
B. Xiong, L. Chen, J. Shi, ACS Catal. 8(2018) 3688-3707.
doi: 10.1021/acscatal.7b04286
H.F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28(2018) 1803329.
doi: 10.1002/adfm.v28.46
X. Liu, L. Dai, Nat. Rev. Mater. 1(2016) 16064.
doi: 10.1038/natrevmats.2016.64
J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10(2015) 444-452.
doi: 10.1038/nnano.2015.48
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Chin. Chem. Lett. 29(2018) 1757-1767.
doi: 10.1016/j.cclet.2018.11.021
S. Zhao, D.W. Wang, R. Amal, L. Dai, Adv. Mater. (2018) 1801526.
C. Chen, D. Yan, Y. Wang, et al., Small (2019) e1805029.
L. Wang, Y. Yi, C. Wu, H. Guo, X. Tu, Angew. Chem. Int. Ed. 56(2017) 13679-13683.
doi: 10.1002/anie.201707131
Y. Richardson, J. Blin, A. Julbe, Prog. Energy Combust. Sci. 38(2012) 765-781.
doi: 10.1016/j.pecs.2011.12.001
Á. Martín, A. Navarrete, M.D. Bermejo, J. Supercrit. Fluids 134(2018) 141-149.
doi: 10.1016/j.supflu.2017.11.021
G. Akay, K. Zhang, Ind. Eng. Chem. Res. 56(2017) 457-468.
doi: 10.1021/acs.iecr.6b02053
B. Ouyang, Y. Zhang, Z. Zhang, H.J. Fan, R.S. Rawat, Small 13(2017) 1604265.
doi: 10.1002/smll.v13.34
D. Yan, H. Li, C. Chen, Y. Zou, S. Wang, Small Methods (2018) 1800331.
doi: 10.1002/smtd.201800331
Y. Wang, D. Yan, S. El Hankari, Y. Zou, S. Wang, Adv. Sci. 5(2018) 1800064.
doi: 10.1002/advs.v5.8
S. Dou, L. Tao, R. Wang, et al., Adv. Mater. 30(2018) e1705850.
doi: 10.1002/adma.v30.21
A. Bogaerts, E.C. Neyts, ACS Energy Lett. 3(2018) 1013-1027.
doi: 10.1021/acsenergylett.8b00184
Z. Wang, Y. Zhang, E.C. Neyts, et al., ACS Catal. 8(2018) 2093-2110.
doi: 10.1021/acscatal.7b03723
J. Keil, Frerich, Int. Rev. Chem. Eng. 34(2018) 135-200.
doi: 10.1515/revce-2017-0085
J.H. Koh, H.S. Jeon, M.S. Jee, et al., J. Phys. Chem. C 119(2015) 883-889.
P. Peng, P. Chen, C. Schiappacasse, et al., J. Clean. Prod. 177(2018) 597-609.
doi: 10.1016/j.jclepro.2017.12.229
L. Fang, D. Hallam, R. Bermúdez, Energy Build. 130(2016) 238-243.
doi: 10.1016/j.enbuild.2016.08.035
J.S. Jung, J.G. Kim, J. Electrost. 86(2017) 12-17.
doi: 10.1016/j.elstat.2016.12.011
J.E. Foster, Phys. Plasmas 24(2017) 055501.
doi: 10.1063/1.4977921
X. Ji, X. Yuan, J. Wu, et al., ACS Appl. Mater. Interfaces 9(2017) 24616-24624.
doi: 10.1021/acsami.7b06637
H. Cheng, J. Fan, Y. Zhang, D. Liu, K. Ostrikov, Catal. Today (2018), doi:http://dx.doi.org/10.1016/j.cattod.2018.11.026.
doi: 10.1016/j.cattod.2018.11.026
W. Gu, L. Hu, X. Zhu, et al., Chem. Commun. (Camb.) 54(2018) 12698-12701.
doi: 10.1039/C8CC06399K
B. Cui, B. Hu, J. Liu, et al., ACS Appl. Mater. Interfaces 10(2018) 23858-23873.
doi: 10.1021/acsami.8b06568
D. Yan, Y. Li, J. Huo, et al., Adv. Mater. 29(2017) 1606459.
doi: 10.1002/adma.v29.48
C.J. Liu, G.P. Vissokov, B.W.L. Jang, Catal. Today 72(2002) 173-184.
doi: 10.1016/S0920-5861(01)00491-6
M. Boutonnet Kizling, S.G. Järås, Appl. Catal. A Gen. 147(1996) 1-21.
doi: 10.1016/S0926-860X(96)00215-3
S. Samal, J. Clean. Prod. 142(2017) 3131-3150.
doi: 10.1016/j.jclepro.2016.10.154
Q. Jiang, H. Zhang, S. Wang, Green Chem. 18(2016) 662-666.
doi: 10.1039/C5GC01563D
S. Back, J. Lim, N.Y. Kim, Y.H. Kim, Y. Jung, Chem. Sci. 8(2017) 1090-1096.
doi: 10.1039/C6SC03911A
D. Zhu, J. Liu, S.Z. Qiao, Adv. Mater. 28(2016) 3423-3452.
doi: 10.1002/adma.201504766
K. Zhao, Y. Liu, X. Quan, S. Chen, H. Yu, ACS Appl. Mater. Interfaces 9(2017) 5302-5311.
doi: 10.1021/acsami.6b15402
S. Liu, H. Tao, Q. Liu, et al., ACS Catal. 8(2018) 1469-1475.
doi: 10.1021/acscatal.7b03619
Y. Song, W. Chen, C. Zhao, et al., Angew. Chem. Int. Ed. 56(2017) 10840-10844.
doi: 10.1002/anie.201706777
Z. Gu, H. Shen, L. Shang, et al., Small Methods 2(2018) 1800121.
doi: 10.1002/smtd.v2.11
Z. Gu, N. Yang, P. Han, et al., Small Methods (2018) 1800449.
doi: 10.1002/smtd.201800449
H. Mistry, A.S. Varela, C.S. Bonifacio, et al., Nat. Commun. 7(2016) 12123.
D. Gao, I. Zegkinoglou, N.J. Divins, et al., ACS Nano 11(2017) 4825-4831.
doi: 10.1021/acsnano.7b01257
H. Mistry, Y.W. Choi, A. Bagger, et al., Angew. Chem. Int. Ed. 56(2017) 11394-11398.
doi: 10.1002/anie.201704613
V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Catal. Today 286(2017) 2-13.
doi: 10.1016/j.cattod.2016.06.014
G.F. Chen, S. Ren, L. Zhang, et al., Small Methods (2018) 1800337.
doi: 10.1002/smtd.201800337
M. Li, H. Huang, J. Low, et al., Small Methods (2018) 1800388.
doi: 10.1002/smtd.201800388
R.F. Service, Science 361(2018) 120.
H. Uyama, O. Matsumoto, Plasma Chem. Plasma Process. 9(1989) 13-24.
doi: 10.1007/BF01015824
K. Aika, Catal. Today 286(2017) 14-20.
doi: 10.1016/j.cattod.2016.08.012
M. Iwamoto, M. Akiyama, K. Aihara, T. Deguchi, ACS Catal. 7(2017) 6924-6929.
doi: 10.1021/acscatal.7b01624
X. Guo, Y. Zhu, T. Ma, J. Energy Chem. 26(2017) 1107-1116.
doi: 10.1016/j.jechem.2017.09.012
S. Kumari, S. Pishgar, M.E. Schwarting, W.F. Paxton, J.M. Spurgeon, Chem. Commun. (Camb.) 54(2018) 13347-13350.
doi: 10.1039/C8CC07869F
P. Peng, P. Chen, M. Addy, et al., Chem. Commun. (Camb.) 54(2018) 2886-2889.
doi: 10.1039/C8CC00697K
R. Hawtof, S. Ghosh, E. Guarr, et al., Sci. Adv. 5(2019) eaat5778.
doi: 10.1126/sciadv.aat5778
A. Shen, Y. Zou, Q. Wang, et al., Angew. Chem. Int. Ed. 53(2014) 10804-10808.
doi: 10.1002/anie.201406695
J. He, Y. Zou, S. Wang, Dalton Trans. 48(2019) 15-20.
doi: 10.1039/C8DT04026E
L. Tao, Q. Wang, S. Dou, et al., Chem. Commun. (Camb.) 52(2016) 2764-2767.
doi: 10.1039/C5CC09173J
Z. Liu, Z. Zhao, Y. Wang, et al., Adv. Mater. 29(2017) 1606207.
doi: 10.1002/adma.201606207
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323(2009) 760.
doi: 10.1126/science.1168049
H. Jin, J. Wang, D. Su, et al., J. Am. Chem. Soc. 137(2015) 2688-2694.
doi: 10.1021/ja5127165
J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed.124(2012) 11664-11668.
doi: 10.1002/ange.201206720
L. Qu, Y. Liu, J.B. Baek, L. Dai, ACS Nano 4(2010) 1321-1326.
doi: 10.1021/nn901850u
L. Yang, S. Jiang, Y. Zhao, et al., Angew. Chem. Int. Ed. 50(2011) 7132-7135.
doi: 10.1002/anie.v50.31
S. Ratso, I. Kruusenberg, M. Vikkisk, et al., Carbon 73(2014) 361-370.
doi: 10.1016/j.carbon.2014.02.076
W. Li, D. Yang, H. Chen, Y. Gao, H. Li, Electrochim. Acta 165(2015) 191-197.
doi: 10.1016/j.electacta.2015.03.022
O.L. Li, S. Chiba, Y. Wada, G. Panomsuwan, T. Ishizaki, J. Mater. Chem. A 5(2017) 2073-2082.
doi: 10.1039/C6TA08962C
Y. Wang, F. Yu, M. Zhu, et al., J. Mater. Chem. A 6(2018) 2011-2017.
doi: 10.1039/C7TA08607E
A. Xu, C. Dong, A. Wu, et al., J. Mater. Chem. A 7(2019) 4581-4595.
doi: 10.1039/C8TA11424B
L. Xu, Q. Jiang, Z. Xiao, et al., Angew. Chem. Int. Ed. 55(2016) 5277-5281.
doi: 10.1002/anie.201600687
Y. Wang, Y. Zhang, Z. Liu, et al., Angew. Chem. Int. Ed. 56(2017) 5867-5871.
doi: 10.1002/anie.201701477
L. Tao, C.Y. Lin, S. Dou, et al., Nano Energy 41(2017) 417-425.
doi: 10.1016/j.nanoen.2017.09.055
T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 136(2014) 13925-13931.
doi: 10.1021/ja5082553
X. Zou, J. Su, R. Silva, et al., Chem. Commun. (Camb.) 49(2013) 7522-7524.
doi: 10.1039/c3cc42891e
G.Huang, Z.Xiao, R.Chen, S.Wang, ACSSustain.Chem.Eng.6(2018)15954-15969.
Y. Wang, T. Zhou, K. Jiang, et al., Adv. Energy Mater. 4(2014) 1400696.
doi: 10.1002/aenm.201400696
S. Dou, L. Tao, J. Huo, S. Wang, L. Dai, Energy Environ. Sci. 9(2016) 1320-1326.
doi: 10.1039/C6EE00054A
X. Wang, L. Zhuang, Y. Jia, et al., Angew. Chem. Int. Ed. 57(2018) 16421-16425.
doi: 10.1002/anie.201810199
D. Chen, M. Qiao, Y.R. Lu, et al., Angew. Chem. Int. Ed. 57(2018) 8691-8696.
doi: 10.1002/anie.v57.28
M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, J. Am. Chem. Soc. 137(2015) 3638-3648.
doi: 10.1021/jacs.5b00281
P.F. Liu, S. Yang, B. Zhang, H.G. Yang, ACS Appl. Mater. Interfaces 8(2016) 34474-34481.
doi: 10.1021/acsami.6b12803
F. Song, X. Hu, Nat. Commun. 5(2014) 4477.
doi: 10.1038/ncomms5477
J. Wu, Z. Ren, S. Du, et al., Nano Res. 9(2016) 713-725.
doi: 10.1007/s12274-015-0950-4
Y. Sun, S. Gao, F. Lei, Y. Xie, Chem. Soc. Rev. 44(2015) 623-636.
doi: 10.1039/C4CS00236A
Y. Zhao, X. Jia, G. Chen, et al., J. Am. Chem. Soc. 138(2016) 6517-6524.
doi: 10.1021/jacs.6b01606
R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Adv. Mater. 29(2017) 1701546.
doi: 10.1002/adma.201701546
Y. Wang, C. Xie, Z. Zhang, et al., Adv. Funct. Mater. 28(2018) 1703363.
doi: 10.1002/adfm.201703363
L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Adv. Mater. 30(2018) 1703663.
doi: 10.1002/adma.v30.37
Q. Yang, Q. Xu, H.L. Jiang, Chem. Soc. Rev. 46(2017) 4774-4808.
doi: 10.1039/C6CS00724D
S. Dou, C.L. Dong, Z. Hu, et al., Adv. Funct. Mater. 27(2017) 1702546.
doi: 10.1002/adfm.v27.36
Y. Guo, T. Wang, J. Chen, et al., Adv. Energy Mater. 8(2018) 1800085.
doi: 10.1002/aenm.v8.18
Y. Shi, B. Zhang, Chem. Soc. Rev. 45(2016) 1529-1541.
doi: 10.1039/C5CS00434A
M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, Nano Res. 9(2016) 28-46.
doi: 10.1007/s12274-015-0965-x
Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Acc. Chem. Res. 50(2017) 915-923.
doi: 10.1021/acs.accounts.6b00635
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 29(2017) 1605838.
doi: 10.1002/adma.v29.14
L. Tao, X. Duan, C. Wang, X. Duan, S. Wang, Chem. Commun. (Camb.) 51(2015) 7470-7473.
doi: 10.1039/C5CC01981H
K. Xu, H. Cheng, H. Lv, et al., Adv. Mater. 30(2018) 1703322.
doi: 10.1002/adma.201703322
X. Xia, Y. Zhang, D. Chao, et al., Adv. Mater. 30(2018) 1703322.
doi: 10.1002/adma.201703322
Y. Zhang, B. Ouyang, K. Xu, et al., Small 14(2018) e1800340.
doi: 10.1002/smll.v14.17
Z. Xiao, Y. Wang, Y.C. Huang, et al., Energy Environ. Sci.10(2017) 2563-2569.
doi: 10.1039/C7EE01917C
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195
Wenbi Wu , Yinchu Dong , Haofan Liu , Xuebing Jiang , Li Li , Yi Zhang , Maling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Ajay Piriya Vijaya Kumar Saroja , Yuhan Wu , Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408