Citation: Wang Zehua, Mao Ying, Guan Honghao, Cao Min, Hua Jing, Feng Lei, Liu Lei. Direct oxidative C(sp3) -H cyanation of secondary benzylic ethers[J]. Chinese Chemical Letters, ;2019, 30(6): 1241-1243. doi: 10.1016/j.cclet.2019.03.019 shu

Direct oxidative C(sp3) -H cyanation of secondary benzylic ethers

    * Corresponding authors.
    E-mail addresses: feng_lei@sdu.edu.cn (L. Feng), leiliu@sdu.edu.cn (L. Liu)
  • Received Date: 7 February 2019
    Revised Date: 5 March 2019
    Accepted Date: 12 March 2019
    Available Online: 16 June 2019

Figures(4)

  • Current studies on the oxidative C-H functionalization of benzylic ethers for C-C forging process dominantly focus on primary ethers. The corresponding reaction of secondary ethers remains underdeveloped. Herein, a practical and efficient oxidative C-H cyanation of secondary benzylic ethers with TMSCN in the presence of DDQ is described. The metal-free process is well tolerated with a wide variety of electronically varied α-monosubstituted isochromans, facilely furnishing a library of isochromans bearing α-aryl α-cyano substituent patterns for further diversification and bioactive small molecule identification.
  • 加载中
    1. [1]

      (a) K. Godula, D. Sames, Science 312 (2006) 67-72;
      (b) W.R. Gutekunst, P.S. Baran, Chem. Soc. Rev. 40 (2011) 1976-1991;
      (c) R. Giri, B.F. Shi, K.M. Engle, N. Maugel, J.Q. Yu, Chem. Soc. Rev. 38 (2009) 3242-3272;
      (d) J. Robertson, J. Pillai, R.K. Lush, Chem. Soc. Rev. 30 (2001) 94-103;
      (e) H.M.L. Davies, Angew. Chem. Int. Ed. 45 (2006) 6422-6425;
      (f) S.Y. Zhang, F.M. Zhang, Y.Q. Tu, Chem. Soc. Rev. 40 (2011) 1937-1949.

    2. [2]

      (a) P.A. Wender, V.A. Verma, T.J. Paxton, T.H. Pillow, Acc. Chem. Res. 41 (2008) 40-49;
      (b) B.M. Trost, Acc. Chem. Res. 35 (2002) 695-705.

    3. [3]

      (a) C.J. Li, Z. Li, Pure Appl. Chem. 78 (2006) 935-945;
      (b) S. Murahashi, D. Zhang, Chem. Soc. Rev. 37 (2008) 1490-1501;
      (c) C.J. Li, Acc. Chem. Res. 42 (2009) 335-344;
      (d) C.J. Scheuermann, Chem. -Asian J. 5 (2010) 436-451;
      (e) M. Klussmann, D. Sureshkumar, Synthesis (2011) 353-369;
      (f) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 111 (2011) 1780-1824;
      (g) C.L. Sun, B.J. Li, Z.J. Shi, Chem. Rev. 111 (2011) 1293-1314;
      (h) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 41 (2012) 3464-3484;
      (i) S.H. Cho, J.Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 40 (2011) 5068-5083;
      (j) J. Le Bras, J. Muzart, Chem. Rev. 111 (2011) 1170-1214;
      (k) C.S. Yeung, V.M. Dong, Chem. Rev. 111 (2011) 1215-1292;
      (l) R. Rohlmann, O. García Mancheño, Synlett 24 (2013) 6-10;
      (m) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2014) 74-100.

    4. [4]

      (a) Z. Li, C.J. Li, J. Am. Chem. Soc. 126 (2004) 11810-11811;
      (b) Z. Li, R. Yu, H. Li, Angew. Chem. Int. Ed. 47 (2008) 7497-7450;
      (c) F. Yang, J. Li, J. Xie, Z.Z. Huang, Org. Lett. 12 (2010) 5214-5217;
      (d) D.P. Hari, B. König, Org. Lett. 13 (2011) 3852-3855;
      (e) E.Boess, D.Sureshkumar, A.Sud, etal., J.Am.Chem.Soc.133 (2011) 8106-8109;
      (f) E. Boess, C. Schmitz, M. Klussmann, J. Am. Chem. Soc. 134 (2012) 5317-5325;
      (g)S.I.Murahashi, T.Nakae, H.Terai, N.Komiya, J.Am.Chem.Soc.130 (2008) 11005-11012;
      (h)S.I. Murahashi, N. Komiya, H.Terai, T.Nakae, J.Am.Chem.Soc.125 (2003) 15312-15313;
      (i) W. Muramatsu, K. Nakano, C.J. Li, Org. Lett. 15 (2013) 3650-3653;
      (j) Z. Xie, L. Liu, W. Chen, et al., Angew. Chem. Int. Ed. 53 (2014) 3904-3908;
      (k) J. Zhang, B. Tiwari, C. Xing, X. Chen, Y.R. Chi, Angew. Chem. Int. Ed. 51 (2012) 3649-3652;
      (l)G. Zhang, Y. Ma, S. Wang, Y.Zhang, R. Wang, J. Am. Chem. Soc.134 (2012) 12334-12337;
      (m) D.A. DiRocco, T. Rovis, J. Am. Chem. Soc. 134 (2012) 8094-8097;
      (n) G. Bergonzini, C.S. Schindler, C.J. Wallentin, E.N. Jacobsen, C.R.J. Stephenson, Chem. Sci. 5 (2014) 112-116;
      (o)X.Liu, Z.Meng, C.Li, H.Lou, L.Liu, Angew.Chem.Int.Ed.54 (2015)6012-6015;
      (p) X. Liu, S. Sun, Z. Meng, H. Lou, L. Liu, Org. Lett. 17 (2015) 2396-2399;
      (q) Z. Xie, X. Liu, L. Liu, Org. Lett. 18 (2016) 2982-2985;
      (r) G. Wei, C. Zhang, F. Bureš, et al., ACS Catal. 6 (2016) 3708-3712.

    5. [5]

      (a) Y. Zhang, C.J. Li, Angew. Chem. Int. Ed. 45 (2006) 1949-1952;
      (b) Y. Zhang, C.J. Li, J. Am. Chem. Soc. 128 (2006) 4242-4243;
      (c) W.Y. Tu, L. Liu, P.E. Floreancig, Angew. Chem. Int. Ed. 47 (2008) 4184-4187;
      (d) L. Liu, P.E. Floreancig, Org. Lett. 11 (2009) 3152-3155;
      (e) M. Ghobrial, K. Harhammer, M.D. Mihovilovic, M. Schnürch, Chem. Commun. 46 (2010) 8836-8838;
      (f) H. Richter, R. Rohlmann, O. García Mancheño, Chem. -Eur. J. 17 (2011) 11622-11627;
      (g) M. Ghobrial, M. Schnürch, M.D. Mihovilovic, J. Org. Chem. 76 (2011) 8781-8793;
      (h) S.J. Park, J.R. Price, M.H. Todd, J. Org. Chem. 77 (2012) 949-955;
      (i) D.J. Clausen, P.E. Floreancig, J. Org. Chem. 77 (2012) 6574-6582;
      (j) X. Liu, B. Sun, Z. Xie, et al., J. Org. Chem. 78 (2013) 3104-3112;
      (k) W. Chen, Z. Xie, H. Zheng, H. Lou, L. Liu, Org. Lett. 16 (2014) 5988-5991;
      (l) Z. Meng, S. Sun, H. Yuan, H. Lou, L. Liu, Angew. Chem. Int. Ed. 53 (2014) 543-547;
      (m) W. Muramatsu, K. Nakano, Org. Lett. 16 (2014) 2042-2045;
      (n) M. Xiang, Q.Y. Meng, J.X. Li, et al., Chem. -Eur. J. 21 (2015) 18080-18084;
      (o) M. Xiang, Q.Y. Meng, X.W. Gao, et al., Org. Chem. Front. 3 (2016) 486-490;
      (p) Z. Peng, Y. Wang, Z. Yu, et al., J. Org. Chem. 83 (2018) 7900-7906;
      (q) A. Lee, R.C. Betori, E.A. Crane, K.A. Scheidt, J. Am. Chem. Soc. 140 (2018) 6212-6216;
      (r) L. Jin, J. Feng, G. Lu, C. Cai, Adv. Synth. Catal. 357 (2015) 2105-2110.

    6. [6]

      L. Liu, P.E. Floreancig, Angew. Chem. Int. Ed. 49(2010) 5894-5897.  doi: 10.1002/anie.201002281

    7. [7]

      (a) S.D. Roughley, A.M. Jordan, J. Med. Chem. 54 (2011) 3451-3479;
      (b) Z. Lu, Z. Lin, W. Wang, et al., J. Nat. Prod. 71 (2008) 543-546;
      (c) R.E. TenBrink, C.L. Bergh, J.N. Duncan, J. Med. Chem. 39 (1996) 2435-2437;
      (d) U. Albrecht, M. Lalk, P. Langer, Bioorg. Med. Chem. 13 (2005) 1531-1536;
      (e) S. Bräse, A. Encinas, J. Keck, C.F. Nising, Chem. Rev. 109 (2009) 3903-3990;
      (f) D.R. McMullin, T.K. Nsiama, J.D. Miller, J. Nat. Prod. 77 (2014) 206-212.

    8. [8]

      (a) M.B. Sommer, O. Nielsen, H. Petersen, Patent, US 2011/0065938 (2011);
      (b) T. Giridhar, G. Srinivasulu, K.S. Rao, Patent, US 2011/0092719 (2011);
      (c) N. Chinkov, A. Warm, E.M. Carreira, Angew. Chem. Int. Ed. 50 (2011) 2957-2961.

    9. [9]

      (a) D. Enders, J.P. Shilvock, Chem. Soc. Rev. 29 (2000) 359-373;
      (b) F.F. Fleming, Nat. Prod. Rep. 16 (1999) 597-606;
      (c) F.F. Fleming, L. Yao, P.C. Ravikumar, L. Funk, B.C. Shook, J. Med. Chem. 53 (2010) 7902-7917.

    10. [10]

      (a) S. Kamijo, T. Hoshikawa, M. Inoue, Org. Lett. 13 (2011) 5928-5931;
      (b) S. Kong, L. Zhang, X. Dai, et al., Adv. Synth. Catal. 357 (2015) 2453-2456;
      (c) C. Yan, Y. Liu, Q. Wang, RSC Adv. 4 (2014) 60075-60078;
      (d) F. Le Vaillant, T. Courant, J. Waser, Chem. Sci. 8 (2017) 1790-1800;
      (e) M.X. Sun, Y.F. Wang, B.H. Xu, X.Q. Ma, S.J. Zhang, Org. Biomol. Chem. 16 (2018) (1971);
      (f) Y. Xia, L. Wang, A. Studer, Angew. Chem. Int. Ed. 57 (2018) 12940-12944.

    11. [11]

      S. Dasgupta, T. Rivas, M.P. Watson, Angew. Chem. Int. Ed. 54(2015) 14154-14158.  doi: 10.1002/anie.201507373

    12. [12]

      H.H. Jung, P.E. Floreancig, Tetrahedron 65(2009) 10830-10836.  doi: 10.1016/j.tet.2009.10.088

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    3. [3]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    4. [4]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    5. [5]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    6. [6]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    7. [7]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    8. [8]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    9. [9]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    12. [12]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    13. [13]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    14. [14]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    15. [15]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    16. [16]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    17. [17]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    18. [18]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    19. [19]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    20. [20]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

Metrics
  • PDF Downloads(3)
  • Abstract views(574)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return