The recent progress of wide bandgap donor polymers towards non-fullerene organic solar cells
-
* Corresponding author.
E-mail address: qiangpeng@scu.edu.cn (Q. Peng)
Citation: Xu Xiaopeng, Zhang Guangjun, Li Ying, Peng Qiang. The recent progress of wide bandgap donor polymers towards non-fullerene organic solar cells[J]. Chinese Chemical Letters, ;2019, 30(4): 809-825. doi: 10.1016/j.cclet.2019.02.030
H.W. Hu, P.C.Y. Chow, G.Y. Zhang, et al., Acc. Chem. Res. 50(2017) 2519-2528.
doi: 10.1021/acs.accounts.7b00293
G.Y. Zhang, J.B. Zhao, P.C.Y. Chow, et al., Chem. Rev. 118(2018) 3447-3507.
doi: 10.1021/acs.chemrev.7b00535
Y.M. Sun, H.T. Fu, Z.H. Wang, Angew. Chem. Int. Ed. 58(2019) 4442-4453.
doi: 10.1002/anie.201806291
S.S. Li, L. Ye, W.C. Zhao, et al., J. Am. Chem. Soc. 140(2018) 7159-7167.
doi: 10.1021/jacs.8b02695
S.Q. Zhang, Y.P. Qin, J. Zhu, J.H. Hou, Adv. Mater. 30(2018) 1800868.
doi: 10.1002/adma.v30.20
H. Zhang, H.F. Yao, J.X. Hou, et al., Adv. Mater. 30(2018) 1800613.
doi: 10.1002/adma.v30.28
B. Kan, H.R. Feng, H.F. Yao, et al., Sci. China Chem. 61(2018) 1307-1313.
doi: 10.1007/s11426-018-9334-9
X.P. Xu, Y. Li, M.M. Luo, Q. Peng, Chin. Chem. Lett. 27(2016) 1241-1249.
doi: 10.1016/j.cclet.2016.05.006
S.S. Chen, S.M. Lee, J.Q. Xu, et al., Energy Environ. Sci. 11(2018) 2569-2580.
doi: 10.1039/C8EE01546E
Y.H. Cai, L.J. Huo, Y.M. Sun, Adv. Mater. 29(2017) 1605437.
doi: 10.1002/adma.v29.22
J.B. Zhao, Y.K. Li, G.F. Yang, et al., Nat. Energy 1(2016) 15027.
doi: 10.1038/nenergy.2015.27
T. Liu, X.X. Pan, X.Y. Meng, et al., Adv. Mater. 29(2017) 1604251.
doi: 10.1002/adma.201604251
L.J. Liu, J.N. Pei, S.P. Wen, et al., Macromol. Chem. Phys. 214(2013) 1836-1844.
doi: 10.1002/macp.v214.16
K. Feng, G.F. Yang, X.P. Xu, et al., Adv. Energy Mater. 8(2018) 1602773.
doi: 10.1002/aenm.v8.6
L.J. Huo, X.N. Xue, T. Liu, et al., Chem. Mater. 30(2018) 3294-3300.
doi: 10.1021/acs.chemmater.8b00510
T. Liu, L.J. Huo, S. Chandrabose, et al., Adv. Mater. 30(2018) 1707353.
doi: 10.1002/adma.201707353
I. Fraga Domínguez, A. Distler, L. Lüer, Adv. Energy Mater. 7(2017) 1601320.
doi: 10.1002/aenm.201601320
F.G. Shen, J.Z. Xu, X.M. Li, C.L. Zhan, J. Mater. Chem. A 6(2018) 15433-15455.
doi: 10.1039/C8TA04718A
J.H. Hou, Z.A. Tan, Y. Yan, et al., J. Am. Chem. Soc. 128(2006) 4911-4916.
doi: 10.1021/ja060141m
X. Guo, M.J. Zhang, C.H. Cui, J.H. Hou, Y.F. Li, ACS Appl. Mater. Interfaces 6(2014) 8190-8198.
doi: 10.1021/am500836u
M.T. Dang, L. Hirsch, G. Wantz, Adv. Mater. 23(2011) 3597-3602.
doi: 10.1002/adma.201100792
X. Guo, C.H. Cui, M.J. Zhang, et al., Energy Environ. Sci. 5(2012) 7943-7949.
doi: 10.1039/c2ee21481d
G.J. Zhao, Y.J. He, Y.F. Li, Adv. Mater. 22(2010) 4355-4358.
doi: 10.1002/adma.v22:39
S.X. Li, W.Q. Liu, M.M. Shi, et al., Energy Environ. Sci. 9(2016) 604-610.
doi: 10.1039/C5EE03481G
B. Xiao, A.L. Tang, J. Yang, Z.X. Wei, E.J. Zhou, ACS Macro Lett. 6(2017) 410-414.
doi: 10.1021/acsmacrolett.7b00097
S. Holliday, R.S. Ashraf, A. Wadsworth, et al., Nat. Commun. 7(2016) 11585.
doi: 10.1038/ncomms11585
D. Baran, R.S. Ashraf, D.A. Hanifi, et al., Nat. Mater. 16(2016) 363.
J.H. Hou, L.J. Huo, C. He, C.H. Yang, Y.F. Li, Macromolecules 39(2006) 594-603.
doi: 10.1021/ma051883n
M.J. Zhang, X. Guo, W. Ma, H. Ade, J.H. Hou, Adv. Mater. 26(2014) 5880-5885.
doi: 10.1002/adma.v26.33
C.G. Park, G.E. Park, J.H. Lee, et al., Polymer 146(2018) 142-150.
doi: 10.1016/j.polymer.2018.05.027
X.X. Liao, X.G. Zhao, Z.G. Zhang, et al., Sol. Energy Mater. Sol. C 117(2013) 336-342.
doi: 10.1016/j.solmat.2013.06.035
P.P. Khlyabich, A.E. Rudenko, B.C. Thompson, J. Polym. Sci., Part. A:Polym. Chem. 52(2014) 1055-1058.
doi: 10.1002/pola.27095
X.E. Jia, Z.M. Chen, C.H. Duan, et al., J. Mater. Chem. C 7(2019) 314-323.
doi: 10.1039/C8TC04746D
H. Zhang, S.S. Li, B.W. Xu, et al., J. Mater. Chem. A 4(2016) 18043-18049.
doi: 10.1039/C6TA07672F
Y. Qin, M.A. Uddin, Y. Chen, et al., Adv. Mater. 28(2016) 9416-9422.
doi: 10.1002/adma.201601803
J. Hou, M.H. Park, S. Zhang, et al., Macromolecules 41(2008) 6012-6018.
doi: 10.1021/ma800820r
H.F. Yao, L. Ye, H. Zhang, et al., Chem. Rev. 116(2016) 7397-7457.
doi: 10.1021/acs.chemrev.6b00176
T.E. Kang, T. Kim, C. Wang, S. Yoo, B.J. Kim, Chem. Mater. 27(2015) 2653-2658.
doi: 10.1021/acs.chemmater.5b00481
J.H. Kim, J.B. Park, S.C. Yoon, I.H. Jung, D.H. Hwang, J, . Mater. Chem. C 4(2016) 2170-2177.
doi: 10.1039/C5TC04449A
G.D. Li, Q.Q. Xu, C.M. Chang, et al., Macromol. Rapid Commun. 39(2018) 1800660.
D. Hao, M. Li, Y.H. Liu, C.H. Li, Z.S. Bo, Dyes Pigments 162(2019) 120-125.
doi: 10.1016/j.dyepig.2018.09.079
Y.K. An, X.F. Liao, L. Chen, et al., Adv. Funct. Mater. 28(2018) 1706517.
doi: 10.1002/adfm.v28.16
X.F. Liao, Z.Y. Yao, K. Gao, et al., Adv. Energy Mater. 8(2018) 1801214.
doi: 10.1002/aenm.201801214
M.J. Cho, J.Seo, K.H. Kim, D.H.Choi, P.N. Prasad, Macromol.Rapid Commun. 33(2012) 146-151.
doi: 10.1002/marc.201100501
M.J. Cho, J. Seo, K. Luo, et al., Polymer 53(2012) 3835-3841.
doi: 10.1016/j.polymer.2012.07.007
J. Wolf, F. Cruciani, A. El Labban, P.M. Beaujuge, Chem. Mater. 27(2015) 4184-4187.
doi: 10.1021/acs.chemmater.5b01520
Y. Firdaus, L.P. Maffei, F. Cruciani, et al., Adv. Energy Mater. 7(2017)1700834.
doi: 10.1002/aenm.201700834
G.E. Park, S. Choi, S.Y. Park, et al., Adv. Energy Mater. 7(2017)1700566.
doi: 10.1002/aenm.201700566
Y.H. Liu, H. Lu, M. Li, et al., Macromolecules 51(2018) 8646-8651.
doi: 10.1021/acs.macromol.8b01677
D.D. Xia, Y. Wu, Q. Wang, et al., Macromolecules 49(2016) 6445-6454.
doi: 10.1021/acs.macromol.6b01326
R. Kong, Z. Xiao, F.Y. Xie, J.X. Jiang, L.M. Ding, New. J. Chem. 41(2017) 2895-2898.
doi: 10.1039/C6NJ03991J
D.L. Liu, B. Yang, B. Jang, et al., Energy Environ. Sci. 10(2017) 546-551.
doi: 10.1039/C6EE03489F
X.J. Zhang, J.V. Zhang, H. Lu, et al., J. Mater. Chem. C 3(2015) 6979-6985.
doi: 10.1039/C5TC01148E
J.C. Zhang, H.M. Xiao, X.J. Zhang, et al., J. Mater. Chem. C 4(2016) 5656-5663.
doi: 10.1039/C6TC01438K
H.F. Yao, R.N. Yu, T.J. Shin, et al., Adv. Energy Mater. 6(2016)1600742.
doi: 10.1002/aenm.201600742
H. Yang, Y. Wu, Y. Zou, et al., J. Mater. Chem. A 6(2018) 14700-14708.
doi: 10.1039/C8TA05207G
H. Lu, M. Li, Z.Z. Bi, et al., Org. Electron. 65(2019) 419-425.
doi: 10.1016/j.orgel.2018.11.040
X. Gong, S.Y. Feng, G.W. Li, et al., Dyes Pigments 141(2017) 342-347.
doi: 10.1016/j.dyepig.2017.02.022
Y.H. Liu, S.S. Chen, G.Y. Zhang, P.C.Y. Chow, H. Yan, J. Mater. Chem. A 5(2017) 15017-15020.
doi: 10.1039/C7TA03600K
S.S. Chen, H.T. Yao, Z.K. Li, et al., Adv. Energy Mater. 7(2017) 1602304.
doi: 10.1002/aenm.201602304
H.Y. Jiang, Z. Wang, L.J. Zhang, et al., ACS Appl. Mater. Interfaces 9(2017) 36061-36069.
doi: 10.1021/acsami.7b10059
D.S. Tang, J.H. Wan, X.P. Xu, et al., Nano Energy 53(2018) 258-269.
doi: 10.1016/j.nanoen.2018.08.059
M. Deng, X.P. Xu, Y.W. Lee, et al., ACS Appl. Mater. Interfaces 11(2019) 3308-3316.
doi: 10.1021/acsami.8b18493
H.J. Bin, L. Zhong, Z.G. Zhang, et al., Sci. China Chem. 59(2016) 1317-1322.
T.H. Yan, H.J. Bin, C.K. Sun, Z.G. Zhang, Y.F. Li, Org. Electron. 55(2018) 106-111.
doi: 10.1016/j.orgel.2018.01.018
T.H. Yan, H.J. Bin, C.K. Sun, Z.G. Zhang, Y.F. Li, Org. Electron. 57(2018) 255-262.
doi: 10.1016/j.orgel.2018.03.028
L. Gao, Z.G. Zhang, L.W. Xue, et al., Adv. Mater. 28(2016) 1884-1890.
doi: 10.1002/adma.201504629
L. Gao, Z.G. Zhang, H.J. Bin, et al., Adv. Mater. 28(2016) 8288-8295.
doi: 10.1002/adma.201601595
Y.X. Li, L. Zhong, F.P. Wu, et al., Energy Environ. Sci. 9(2016) 3429-3435.
doi: 10.1039/C6EE00315J
H.J. Bin, Z.G. Zhang, L. Gao, et al., J. Am. Chem. Soc. 138(2016) 4657-4664.
doi: 10.1021/jacs.6b01744
R.N. Yu, S.Q. Zhang, H.F. Yao, et al., Adv. Mater. 29(2017)1700437.
doi: 10.1002/adma.v29.26
Q.P. Fan, W.Y. Su, X.Y. Meng, et al., Sol. RRL 1(2017)1700020.
doi: 10.1002/solr.v1.5
Q.P. Fan, W.Y. Su, X. Guo, et al., J. Mater. Chem. A 5(2017) 9204-9209.
doi: 10.1039/C7TA02075A
W.Y. Su, G.W. Li, Q.P. Fan, et al., J. Mater. Chem. A 7(2018) 2351-2359.
Y.K. Yang, Z.G. Zhang, H.J. Bin, et al., J. Am. Chem. Soc.138(2016) 15011-15018.
doi: 10.1021/jacs.6b09110
H. Huang, H.J. Bin, Z.X. Peng, et al., Macromolecules 51(2018) 6028-6036.
doi: 10.1021/acs.macromol.8b01036
H.J. Bin, L. Gao, Z.G. Zhang, et al., Nat. Commun. 7(2016) 13651.
doi: 10.1038/ncomms13651
H.J. Bin, Y.K. Yang, Z.X. Peng, et al., Adv. Energy Mater. 8(2018)1702324.
doi: 10.1002/aenm.201702324
H.J. Bin, L. Zhong, Y.K. Yang, et al., Adv. Energy Mater. 7(2017) 1700746.
doi: 10.1002/aenm.201700746
L.W. Xue, Y.K. Yang, J.Q. Xu, et al., Adv. Mater. 29(2017) 1703344.
doi: 10.1002/adma.201703344
W.R. Liu, J.Y. Zhang, Z.C. Zhou, et al., Adv. Mater. 30(2018) 1800403.
doi: 10.1002/adma.v30.26
B.B. Fan, P. Zhu, J.M. Xin, et al., Adv. Energy Mater. 8(2018) 1703085.
doi: 10.1002/aenm.v8.14
Z. Liu, D.Y. Liu, K.L. Zhang, et al., J. Mater. Chem. A 5(2017) 21650-21657.
doi: 10.1039/C7TA07390A
D.Y. Liu, K.L. Zhang, Y.Q. Zhong, et al., J. Mater. Chem. A 6(2018) 18125-18132.
doi: 10.1039/C8TA07134A
Y.Q. Zhong, D.Y. Liu, K.L. Zhang, et al., J. Polym. Sci., Part. A:Polym. Chem. 56(2018) 2762-2770.
doi: 10.1002/pola.v56.24
S.S. Chen, Y.H. Liu, L. Zhang, et al., J. Am. Chem. Soc. 139(2017) 6298-6301.
doi: 10.1021/jacs.7b01606
K. Feng, J. Yuan, Z.Z. Bi, et al., iScience 12(2019) 1-12.
doi: 10.1016/j.isci.2018.12.027
A.L. Tang, B. Xiao, F. Chen, et al., Adv. Energy Mater. 8(2018) 1801582.
doi: 10.1002/aenm.v8.25
W.Y. Su, Y. Meng, X. Guo, et al., J. Mater. Chem. A 6(2018) 16403-16411.
doi: 10.1039/C8TA05376F
W.C. Zhao, S.Q. Zhang, Y. Zhang, et al., Adv. Mater. 30(2018) 1704837.
doi: 10.1002/adma.v30.4
Z.T. Liu, Y.R. Gao, J. Dong, et al., J. Phys. Chem. Lett. 9(2018) 6955-6962.
doi: 10.1021/acs.jpclett.8b03247
S.J. Liu, Y. Firdaus, S. Thomas, et al., Angew. Chem. Int. Ed. 57(2018) 531-535.
doi: 10.1002/anie.201709509
N. Bauer, Q.Q. Zhang, J.S. Zhu, et al., J. Mater. Chem. A 5(2017) 22536-22541.
doi: 10.1039/C7TA07882J
Y.Z. Lin, F.W. Zhao, S.K.K. Prasad, et al., Adv. Mater. 30(2018) 1706363.
doi: 10.1002/adma.201706363
N. Bauer, Q.Q. Zhang, J.B. Zhao, et al., J. Mater. Chem. A 5(2017) 4886-4893.
doi: 10.1039/C6TA10450A
Y.Y. Gao, Z. Wang, J.Q. Zhang, et al., Macromolecules 51(2018) 2498-2505.
doi: 10.1021/acs.macromol.7b02676
Z.J. Li, X.P. Xu, G.J. Zhang, et al., Sol. RRL 2(2018) 1800186.
doi: 10.1002/solr.v2.10
Y.Y. Gao, Z. Wang, J.Q. Zhang, et al., J. Mater. Chem. A 6(2018) 4023-4031.
doi: 10.1039/C7TA10976H
Y.Y. Gao, R.X. Zhu, Z. Wang, et al., ACSAppl. Energy Mater.1(2018) 1888-1892.
doi: 10.1021/acsaem.8b00574
W.B. Li, G.D. Li, X. Guo, et al., J. Mater. Chem. A 5(2017) 19680-19686.
doi: 10.1039/C7TA06476D
Z.J. Li, X.F. Xu, W. Zhang, et al., Energy Environ. Sci. 10(2017) 2212-2221.
doi: 10.1039/C7EE01858D
W.K. Zhong, J. Cui, B.B. Fan, et al., Chem. Mater. 29(2017) 8177-8186.
doi: 10.1021/acs.chemmater.7b02228
X. Liu, C. Zhang, C. Duan, et al., J. Am. Chem. Soc. 140(2018) 8934-8943.
doi: 10.1021/jacs.8b05038
W. Huang, M.L. Li, F.Y. Lin, et al., Mol. Syst. Des. Eng. 3(2018) 103-112.
doi: 10.1039/C7ME00088J
W.C. Chen, H.X. Jiang, G.Y. Huang, et al., Sol. RRL 2(2018)1800101.
doi: 10.1002/solr.v2.8
W.B. Li, G.D. Li, X. Guo, et al., J. Mater. Chem. A 6(2018) 6551-6558.
doi: 10.1039/C7TA11059F
S.G. Wen, W.C. Chen, G.Y. Huang, et al., J. Mater. Chem. C 6(2018) 1753-1758.
doi: 10.1039/C7TC04750A
W.C. Chen, G.Y. Huang, X.M. Li, et al., ACS Appl. Mater. Interfaces 10(2018) 42747-42755.
doi: 10.1021/acsami.8b16554
Z.Y. Li, B.B. Fan, B.T. He, et al., Sci. China Chem. 61(2018) 427-436.
doi: 10.1007/s11426-017-9188-7
C. Weng, W.G. Wang, J.T. Liang, et al., J. Polym. Sci., Part. A:Polym. Chem. 56(2018) 2330-2343.
doi: 10.1002/pola.v56.20
Y. Zou, Y.Y. Dong, Y. Wu, et al., Org. Electron. 63(2018) 289-295.
doi: 10.1016/j.orgel.2018.09.047
M. He, W.L. Li, H.K. Tian, et al., Org. Electron. 65(2019) 31-38.
doi: 10.1016/j.orgel.2018.10.034
H.R. Lin, S.S. Chen, Z.K. Li, et al., Adv. Mater. 27(2015) 7299-7304.
doi: 10.1002/adma.201502775
J. Liu, L.K. Ma, Z.K. Li, et al., J. Mater. Chem. A 5(2017) 22480-22488.
doi: 10.1039/C7TA07830G
H.W. Hu, K. Jiang, P.C.Y. Chow, et al., Adv. Energy Mater. 8(2018)1701674.
doi: 10.1002/aenm.201701674
Y.K. An, X.F. Liao, L. Chen, et al., Sol. RRL 2(2018)1800291.
D.P. Qian, L. Ye, M.J. Zhang, et al., Macromolecules 45(2012) 9611-9617.
doi: 10.1021/ma301900h
L. Ye, W. Jiang, W.C. Zhao, et al., Small 10(2014) 4658-4663.
doi: 10.1002/smll.v10.22
W.C. Zhao, D.P. Qian, S.Q. Zhang, et al., Adv. Mater. 28(2016) 4734-4739.
doi: 10.1002/adma.v28.23
X.H. Liu, Y. Zou, H.Q. Wang, et al., ACS Appl. Mater. Interfaces 10(2018) 38302-38309.
doi: 10.1021/acsami.8b15028
Z.G. Zhang, Y. Yang, J. Yao, et al., Angew. Chem. Int. Ed.56(2017) 13503-13507.
doi: 10.1002/anie.201707678
Y. Wu, Y. Zou, H. Yang, et al., ACS Appl. Mater. Interfaces 9(2017) 37078-37086.
doi: 10.1021/acsami.7b11488
Z.P. Fei, F.D. Eisner, X.C. Jiao, et al., Adv. Mater. 30(2018)1705209.
doi: 10.1002/adma.v30.8
Y.N. Wu, C.B. An, L.B. Shi, et al., Angew. Chem. Int. Ed. 57(2018) 12911-12915.
doi: 10.1002/anie.201807865
Y. Wu, H. Yang, Y. Zou, et al., Sol. RRL 2(2018)1800060.
doi: 10.1002/solr.v2.7
L.L. Ye, Y.P. Xie, K.K. Weng, et al., Nano Energy 58(2019) 220-226.
doi: 10.1016/j.nanoen.2019.01.039
Y. Wang, Q.P. Fan, X. Guo, et al., J. Mater. Chem. A 5(2017) 22180-22185.
doi: 10.1039/C7TA07785H
Q.P. Fan, Y. Wang, M.J. Zhang, et al., Adv. Mater. 30(2018)1704546.
doi: 10.1002/adma.201704546
S.S. Li, L. Ye, W.C. Zhao, et al., Adv. Mater. 29(2017)1704051.
doi: 10.1002/adma.201704051
Q.P. Fan, W.Y. Su, Y. Wang, et al., Sci. China Chem. 61(2018) 531-537.
doi: 10.1007/s11426-017-9199-1
Z. Zheng, Q. Hu, S.Q. Zhang, et al., Adv. Mater. (2018)1801801.
T. Liu, Z.H. Luo, Q.P. Fan, et al., Energy Environ. Sci. 11(2018) 3275-3282.
doi: 10.1039/C8EE01700J
J.L. Wang, K.K. Liu, L. Hong, et al., ACS Energy Lett. 3(2018) 2967-2976.
doi: 10.1021/acsenergylett.8b01808
Q.P. Fan, Q.L. Zhu, Z. Xu, et al., Nano Energy 48(2018) 413-420.
doi: 10.1016/j.nanoen.2018.04.002
J. Yuan, Y.Q. Zhang, L.Y. Zhou, et al., Joule 3(2019) 1140-1151.
doi: 10.1016/j.joule.2019.01.004
H.T. Yao, F.J. Bai, H.W. Hu, et al., ACS Energy Lett. 4(2019) 417-422.
doi: 10.1021/acsenergylett.8b02114
W.C. Zhao, S.S. Li, H.F. Yao, et al., J. Am. Chem. Soc. 139(2017) 7148-7151.
doi: 10.1021/jacs.7b02677
Y. Cui, S.Q. Zhang, N.N. Liang, et al., Adv. Mater. (2018)1802499.
T. Rehman, Z.X. Liu, T.K. Lau, et al., ACS Appl. Mater. Interfaces (2018), doi: http://dx.doi.org/10.1021/acsami.1028b16628.
Q.P. Fan, Z. Xu, X. Guo, et al., Nano Energy 40(2017) 20-26.
doi: 10.1016/j.nanoen.2017.07.047
X.N. Xue, K.K. Weng, F. Qi, et al., Adv. Energy Mater. (2018)1802686.
W.B. Li, G.D. Li, H. Guo, et al., J. Mater. Chem. A 7(2019) 1307-1314.
doi: 10.1039/C8TA11006A
Y.P. Qin, L. Ye, S.Q. Zhang, et al., J. Mater. Chem. A 6(2018) 4324-4330.
doi: 10.1039/C8TA00368H
Y.H. Li, D.Y. Liu, J.Y. Wang, et al., Chem. Mater. 29(2017) 8249-8257.
doi: 10.1021/acs.chemmater.7b02495
Y.H. Li, L.R. Duan, D.Y. Liu, et al., J. Mater. Chem. C 6(2018) 2806-2813.
doi: 10.1039/C8TC00148K
D.Y. Liu, J.Y. Wang, C.Y. Gu, et al., Adv. Mater. 30(2018)1705870.
doi: 10.1002/adma.v30.8
M.H. Hoang, G.E. Park, S. Choi, et al., J. Mater. Chem. C 7(2019) 111-118.
doi: 10.1039/C8TC05035J
J.Y. Kim, S. Park, S. Lee, et al., Adv. Energy Mater. (2018)1801601.
L.J. Huo, T. Liu, X.B. Sun, et al., Adv. Mater. 27(2015) 2938-2944.
doi: 10.1002/adma.v27.18
D. Sun, D. Meng, Y.H. Cai, et al., J. Am. Chem. Soc. 137(2015) 11156-11162.
doi: 10.1021/jacs.5b06414
D. Meng, D. Sun, C.M. Zhong, et al., J. Am. Chem. Soc. 138(2016) 375-380.
doi: 10.1021/jacs.5b11149
Y.Z. Lin, Q. He, F.W. Zhao, et al., J. Am. Chem. Soc. 138(2016) 2973-2976.
doi: 10.1021/jacs.6b00853
Y.Z. Lin, F.W. Zhao, Q. He, et al., J. Am. Chem. Soc. 138(2016) 4955-4961.
doi: 10.1021/jacs.6b02004
W.T. Xiong, X.Y. Meng, T. Liu, et al., Org. Electron. 50(2017) 376-383.
doi: 10.1016/j.orgel.2017.08.005
K.K. Dou, X.C. Wang, Z.R. Du, et al., J. Mater. Chem. A 7(2018) 958-964.
T. Liu, D. Meng, Y.H. Cai, et al., Adv. Sci. 3(2016)1600117.
doi: 10.1002/advs.201600117
J.Y. Yuan, W.L. Ma, J. Mater. Chem. A 3(2015) 7077-7085.
doi: 10.1039/C4TA06648K
T. Kim, J.H. Kim, T.E. Kang, et al., Nat. Commun. 6(2015) 8547.
doi: 10.1038/ncomms9547
C. Lee, T. Giridhar, J. Choi, et al., Chem. Mater. 29(2017) 9407-9415.
doi: 10.1021/acs.chemmater.7b03495
M.A. Uddin, Y. Kim, R. Younts, et al., Macromolecules 49(2016) 6374-6383.
doi: 10.1021/acs.macromol.6b01414
J.Y. Yuan, W.P. Guo, Y.X. Xia, et al., Nano Energy 35(2017) 251-262.
doi: 10.1016/j.nanoen.2017.03.050
G.Q. Ding, J.Y. Yuan, F. Jin, et al., Nano Energy 36(2017) 356-365.
doi: 10.1016/j.nanoen.2017.04.061
X.F. Xu, Z.J. Li, W. Zhang, et al., Adv. Energy Mater. 8(2018)1700908.
doi: 10.1002/aenm.v8.1
T. Zhang, W.H. Feng, W. Wang, et al., J. Mater. Chem. C 6(2018) 8418-8428.
doi: 10.1039/C8TC02553C
J. Oh, K. Kranthiraja, C. Lee, et al., Adv. Mater. 28(2016) 10016-10023.
doi: 10.1002/adma.201602298
A. Kim, C.G. Park, S.H. Park, et al., J. Mater. Chem. A 6(2018) 10095-10103.
doi: 10.1039/C8TA01765D
F. Yang, D.P. Qian, A.H. Balawi, et al., Phys. Chem. Chem. Phys. 19(2017) 23990-23998.
doi: 10.1039/C7CP04780K
W.T. Hadmojo, F.T.A. Wibowo, D.Y. Ryu, I.H. Jung, S.Y. Jang, ACS Appl. Mater. Interfaces 9(2017) 32939-32945.
doi: 10.1021/acsami.7b09757
F.Y. Lin, W. Huang, H.T. Sun, et al., Chem. Mater. 29(2017) 5636-5645.
doi: 10.1021/acs.chemmater.7b01335
Y. Xie, W. Huang, Q.B. Liang, et al., ACS Energy Lett. (2019) 4-16.
J. Zhang, G.Y. Huang, H. Tan, et al., Polymer 145(2018) 108-116.
doi: 10.1016/j.polymer.2018.04.069
Y.J. Guo, M. Li, Y.Y. Zhou, et al., Macromolecules 50(2017) 7984-7992.
doi: 10.1021/acs.macromol.7b01738
L.Y. Lan, Z.M. Chen, Q. Hu, et al., Adv. Sci. 3(2016)1600032.
doi: 10.1002/advs.201600032
B.B. Fan, L. Ying, Z.F. Wang, et al., Energy Environ. Sci. 10(2017) 1243-1251.
doi: 10.1039/C7EE00619E
B.B. Fan, K. Zhang, X.F. Jiang, et al., Adv. Mater. 29(2017)1606396.
doi: 10.1002/adma.201606396
P. Zhu, B.B. Fan, X.Y. Du, et al., ACS Appl. Mater. Interfaces 10(2018) 22495-22503.
doi: 10.1021/acsami.8b05700
K. Li, Z.C. Hu, Z.M.Y. Zeng, et al., Org. Electron. 57(2018) 317-322.
doi: 10.1016/j.orgel.2018.03.005
B.B. Fan, X.Y. Du, F. Liu, et al., Nat. Energy 3(2018) 1051-1058.
doi: 10.1038/s41560-018-0263-4
J. Yuan, L.X. Qiu, Z.G. Zhang, et al., Nano Energy 30(2016) 312-320.
doi: 10.1016/j.nanoen.2016.10.008
C.K. Sun, F. Pan, H.J. Bin, et al., Nat. Commun. 9(2018) 743.
doi: 10.1038/s41467-018-03207-x
J. Yang, M.A. Uddin, Y.M. Tang, et al., ACS Appl. Mater. Interfaces 10(2018) 23235-23246.
doi: 10.1021/acsami.8b04432
T. Yu, X.P. Xu, G.J. Zhang, et al., Adv. Funct. Mater. 27(2017)1701491.
doi: 10.1002/adfm.v27.28
S. Subramaniyan, H. Xin, F.S. Kim, et al., Adv. Energy Mater.1(2011) 854-860.
doi: 10.1002/aenm.v1.5
T. Earmme, Y.J. Hwang, N.M. Murari, S. Subramaniyan, S.A. Jenekhe, J. Am. Chem. Soc. 135(2013) 14960-14963.
doi: 10.1021/ja4085429
T. Earmme, Y.J. Hwang, S. Subramaniyan, S.A. Jenekhe, Adv. Mater. 26(2014) 6080-6085.
doi: 10.1002/adma.201401490
Y.J. Hwang, H.Y. Li, B.A.E. Courtright, S. Subramaniyan, S.A. Jenekhe, Adv. Mater. 28(2016) 124-131.
doi: 10.1002/adma.201503801
K. Zhao, Q. Wang, B.W. Xu, et al., J. Mater. Chem. A 4(2016) 9511-9518.
doi: 10.1039/C6TA03288E
B. Guo, W.B. Li, X. Guo, et al., Adv. Mater. 29(2017)1702291.
doi: 10.1002/adma.201702291
Y.D. Zhang, X. Guo, B. Guo, et al., Adv. Funct. Mater. 27(2017)1603892.
doi: 10.1002/adfm.v27.10
W.Y. Su, Q.P. Fan, X. Guo, et al., Nano Energy 38(2017) 510-517.
doi: 10.1016/j.nanoen.2017.05.060
B.F. Zhao, W.P. Wang, J.M. Xin, et al., ACS Sustain. Chem. Eng. 6(2018) 2177-2187.
doi: 10.1021/acssuschemeng.7b03606
X. Guo, W.B. Li, H. Guo, et al., J. Mater. Chem. A 6(2018) 16529-16536.
doi: 10.1039/C8TA05868G
S.G. Wen, Y. Li, T. Rath, et al., Chem. Mater. 31(2019) 919-926.
doi: 10.1021/acs.chemmater.8b04265
B. Guo, W.B. Li, X. Guo, et al., Nano Energy 34(2017) 556-561.
doi: 10.1016/j.nanoen.2017.03.013
S.R. Huang, L. Chen, Z.H. Liao, et al., Org. Electron. 64(2019) 110-116.
doi: 10.1016/j.orgel.2018.10.019
X.P. Xu, T. Yu, Z.Z. Bi, et al., Adv. Mater. 30(2018)1703973.
doi: 10.1002/adma.v30.3
S.C. Wang, Z.J. Li, X.P. Xu, et al., J. Mater. Chem. A 6(2018) 22503-22507.
doi: 10.1039/C8TA08948E
X.P. Xu, Z.J. Li, Z.Z. Bi, et al., Adv. Mater. 30(2018)1800737.
doi: 10.1002/adma.v30.28
T. Zhang, G. Zeng, F. Ye, X.L. Zhao, X.N. Yang, Adv. Energy Mater. 8(2018) 1801387.
doi: 10.1002/aenm.v8.25
Z. Li, D.L. Yang, T. Zhang, et al., Small 14(2018)1704491.
doi: 10.1002/smll.v14.16
J.W. Yu, J. Yang, X. Zhou, et al., Macromolecules 50(2017) 8928-8937.
doi: 10.1021/acs.macromol.7b01958
P.L. Gao, J.F. Tong, P.Z. Guo, et al., J. Polym. Sci., Part. A:Polym. Chem. 56(2018) 85-95.
doi: 10.1002/pola.v56.1
S.S. Chen, H.J. Cho, J. Lee, et al., Adv. Energy Mater. 7(2017)1701125.
doi: 10.1002/aenm.201701125
V. Tamilavan, J. Lee, R. Agneeswari, et al., Org. Electron. 63(2018) 78-85.
doi: 10.1016/j.orgel.2018.09.015
B. Yang, S.Q. Zhang, Y. Chen, et al., Macromolecules 50(2017) 1453-1462.
doi: 10.1021/acs.macromol.6b02733
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Lei Wang , Jun-Jie Wu , Chang-Cun Yan , Wan-Ying Yang , Zong-Lu Che , Xin-Yu Xia , Xue-Dong Wang , Liang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Lihua Gao , Yinglei Han , Chensheng Lin , Huikang Jiang , Guang Peng , Guangsai Yang , Jindong Chen , Ning Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
Donghui Wu , Qilin Zhao , Jian Sun , Xiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
Shaohua Zhang , Xiaojuan Dai , Wei Hao , Liyao Liu , Yingqiao Ma , Ye Zou , Jia Zhu , Chong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Yuanzhe Lu , Yuanqin Zhu , Linfeng Zhong , Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249