Analytical methods for locating modifications in nucleic acids
-
* Corresponding author.
E-mail address: bfyuan@whu.edu.cn (B. Yuan)
1 These authors contributed equally to this work
Citation: Qi Chubo, Ding Jianghui, Yuan Bifeng, Feng Yuqi. Analytical methods for locating modifications in nucleic acids[J]. Chinese Chemical Letters, ;2019, 30(9): 1618-1626. doi: 10.1016/j.cclet.2019.02.005
T. Carell, M.Q. Kurz, M. Muller, M. Rossa, F. Spada, Angew. Chem. Int. Ed. Engl. 57(2018) 4296-4312.
doi: 10.1002/anie.201708228
P. Boccaletto, M.A. Machnicka, E. Purta, et al., Nucleic Acids Res. 46 (2018) D303-D307.
K. Chen, B.S. Zhao, C. He, Cell Chem. Biol. 23(2016) 74-85.
doi: 10.1016/j.chembiol.2015.11.007
B. Chen, B.F. Yuan, Y.Q. Feng, Anal. Chem. 91(2019) 743-756.
doi: 10.1021/acs.analchem.8b04078
T. Liu, C.J. Ma, B.F. Yuan, Y.Q. Feng, Sci. China Chem. 61(2018) 381-392.
doi: 10.1007/s11426-017-9186-y
J. Song, C. Yi, ACS Chem. Biol. 12(2017) 316-325.
doi: 10.1021/acschembio.6b00960
X. Wu, Y. Zhang, Nat. Rev. Genet. 18(2017) 517-534.
G.Z. Luo, C. He, Nat. Struct. Mol. Biol. 24(2017) 503-506.
doi: 10.1038/nsmb.3412
J. Xiong, T.T. Ye, C.J. Ma, et al., Nucleic Acids Res. 47(2019) 1268-1277.
doi: 10.1093/nar/gky1218
X. Lu, B.S. Zhao, C. He, Chem. Rev. 115(2015) 2225-2239.
doi: 10.1021/cr500470n
S. Kriaucionis, N. Heintz, Science 324(2009) 929-930.
doi: 10.1126/science.1169786
M. Tahiliani, K.P. Koh, Y. Shen, et al., Science 324(2009) 930-935.
doi: 10.1126/science.1170116
S. Ito, L. Shen, Q. Dai, et al., Science 333(2011) 1300-1303.
doi: 10.1126/science.1210597
Y.F. He, B.Z. Li, Z. Li, et al., Science 333(2011) 1303-1307.
doi: 10.1126/science.1210944
E.L. Greer, M.A. Blanco, L. Gu, et al., Cell 161(2015) 868-878.
doi: 10.1016/j.cell.2015.04.005
Q. Xie, T.P. Wu, R.C. Gimple, et al., Cell 175(2018) 1228-1243.
doi: 10.1016/j.cell.2018.10.006
G. Zhang, H. Huang, D. Liu, et al., Cell 161(2015) 893-906.
doi: 10.1016/j.cell.2015.04.018
T.P. Wu, T. Wang, M.G. Seetin, et al., Nature 532(2016) 329-333.
doi: 10.1038/nature17640
I.A. Roundtree, M.E. Evans, T. Pan, C. He, Cell 169(2017) 1187-1200.
doi: 10.1016/j.cell.2017.05.045
S. Li, C.E. Mason, Annu. Rev. Genomics Hum. Genet. 15(2014) 127-150.
doi: 10.1146/annurev-genom-090413-025405
M. Helm, Y. Motorin, Nat. Rev. Genet. 18(2017) 275-291.
M.D. Lan, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30(2019) 1-6.
doi: 10.1016/j.cclet.2018.04.021
B.F. Yuan, Y.Q. Feng, TrAC-Trend. Anal. Chem. 54(2014) 24-35.
doi: 10.1016/j.trac.2013.11.002
Y. Tang, J.M. Chu, W. Huang, et al., Anal. Chem. 85(2013) 6129-6135.
doi: 10.1021/ac4010869
Y. Tang, J. Xiong, H.P. Jiang, et al., Anal. Chem. 86(2014) 7764-7772.
doi: 10.1021/ac5016886
Y. Tang, S.J. Zheng, C.B. Qi, Y.Q. Feng, B.F. Yuan, Anal. Chem. 87(2015) 3445-3452.
doi: 10.1021/ac504786r
Q.Y. Li, B.F. Yuan, Y.Q. Feng, Chem. Lett. 47(2018) 1453-1459.
W. Huang, M.D. Lan, C.B. Qi, et al., Chem. Sci. 7(2016) 5495-5502.
doi: 10.1039/C6SC01589A
H. Zeng, C.B. Qi, T. Liu, et al., Anal. Chem. 89(2017) 4153-4160.
doi: 10.1021/acs.analchem.7b00052
M. Buck, M. Connick, B.N. Ames, Anal. Biochem. 129(1983) 1-13.
doi: 10.1016/0003-2697(83)90044-1
H. Grosjean, G. Keith, L. Droogmans, Methods Mol. Biol. 265(2004) 357-391.
M.G. Cornelius, H.H. Schmeiser, Electrophoresis 28(2007) 3901-3907.
doi: 10.1002/elps.200700127
C. Wetzel, P.A. Limbach, Analyst 141(2016) 16-23.
doi: 10.1039/C5AN01797A
P.A. Limbach, M.J. Paulines, Wiley Interdiscip. Rev. RNA 8 (2017) e1367.
T. Huang, M.R. Armbruster, J.B. Coulton, J.L. Edwards, Anal. Chem. 91(2018) 109-125.
doi: 10.1021/acs.analchem.7b04669
N. Hamada, Y. Hashi, S. Yamaki, et al., Chin. Chem. Lett. 30(2019) 99-102.
doi: 10.1016/j.cclet.2018.10.029
Z. Wang, L. Chi, Chin. Chem. Lett. 29(2018) 11-18.
doi: 10.1016/j.cclet.2017.08.050
W. Huang, C.B. Qi, S.W. Lv, et al., Anal. Chem. 88(2016) 1378-1384.
doi: 10.1021/acs.analchem.5b03962
W. Huang, J. Xiong, Y. Yang, et al., RSC Adv. 5(2015) 64046-64054.
doi: 10.1039/C5RA05307B
S. Liu, Y. Wang, Chem. Soc. Rev. 44(2015) 7829-7854.
doi: 10.1039/C5CS00316D
J.M. Chu, T.T. Ye, C.J. Ma, et al., ACS Chem. Biol. 13(2018) 3243-3250.
doi: 10.1021/acschembio.7b00906
J. Xiong, X. Liu, Q.Y. Cheng, et al., ACS Chem. Biol. 12(2017) 1636-1643.
doi: 10.1021/acschembio.7b00170
J.M. Chu, C.B. Qi, Y.Q. Huang, et al., Anal. Chem. 87(2015) 7364-7372.
doi: 10.1021/acs.analchem.5b01614
H.P. Jiang, T. Liu, N. Guo, et al., Anal. Chim. Acta 981(2017) 1-10.
doi: 10.1016/j.aca.2017.06.009
H.Y. Zhang, J. Xiong, B.L. Qi, Y.Q. Feng, B.F. Yuan, Chem. Commun. (Camb.) 52(2016) 737-740.
doi: 10.1039/C5CC07354E
H.P. Jiang, J. Xiong, F.L. Liu, et al., Chem. Sci. 9(2018) 4160-4167.
doi: 10.1039/C7SC05472F
A. Nyakas, S.R. Stucki, S. Schurch, J. Am. Soc. Mass. Spectrom. 22(2011) 875-887.
doi: 10.1007/s13361-011-0106-z
J.A. Kowalak, S.C. Pomerantz, P.F. Crain, J.A. McCloskey, Nucleic Acids Res. 21(1993) 4577-4585.
doi: 10.1093/nar/21.19.4577
C.B. Qi, H.P. Jiang, J. Xiong, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30(2019) 553-557.
doi: 10.1016/j.cclet.2018.11.029
M.D. Lan, J. Xiong, X.J. You, et al., Chem.-Eur. J. 24(2018) 9949-9956.
doi: 10.1002/chem.201801640
M.L. Chen, F. Shen, W. Huang, et al., Clin. Chem. 59(2013) 824-832.
doi: 10.1373/clinchem.2012.193938
J. Xiong, H.P. Jiang, C.Y. Peng, et al., Clin. Epigenet. 7 (2015) 72.
B.F. Yuan, Methods Mol. Biol. 1562(2017) 33-42.
Q.Y. Cheng, J. Xiong, F. Wang, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 29(2018) 115-118.
doi: 10.1016/j.cclet.2017.06.009
T. Suzuki, T. Suzuki, Nucleic Acids Res. 42(2014) 7346-7357.
doi: 10.1093/nar/gku390
M. Taoka, Y. Nobe, Y. Yamaki, et al., Nucleic Acids Res. 46(2018) 9289-9298.
doi: 10.1093/nar/gky811
X. Cao, P.A. Limbach, Anal. Chem. 87(2015) 8433-8440.
doi: 10.1021/acs.analchem.5b01826
M. Taoka, Y. Nobe, M. Hori, et al., Nucleic Acids Res. 43 (2015) e115.
J.A. Kowalak, E. Bruenger, T. Hashizume, et al., Nucleic Acids Res. 24(1996) 688-693.
doi: 10.1093/nar/24.4.688
B. Felden, K. Hanawa, J.F. Atkins, et al., EMBO J. 17(1998) 3188-3196.
doi: 10.1093/emboj/17.11.3188
P.F. Crain, J.D. Alfonzo, J. Rozenski, et al., RNA 8(2002) 752-761.
doi: 10.1017/S1355838202022045
B.I. Kang, K. Miyauchi, M. Matuszewski, et al., Nucleic Acids Res. 45(2017) 2124-2136.
doi: 10.1093/nar/gkw1120
S. Douthwaite, F. Kirpekar, Methods Enzymol. 425(2007) 1-20.
doi: 10.1016/S0076-6879(07)25001-3
A.M. Giessing, F. Kirpekar, J. Proteomics 75(2012) 3434-3449.
doi: 10.1016/j.jprot.2012.01.032
K.G. Patteson, L.P. Rodicio, P.A. Limbach, Nucleic Acids Res. 29 (2001) E49.
J. Mengel-Jorgensen, F. Kirpekar, Nucleic Acids Res. 30 (2002) e135.
B. Yu, Z. Yang, J. Li, et al., Science 307(2005) 932-935.
doi: 10.1126/science.1107130
M. Taucher, K. Breuker, Angew. Chem. Int. Ed. Engl. 51(2012) 11289-11292.
doi: 10.1002/anie.201206232
H. Glasner, C. Riml, R. Micura, K. Breuker, Nucleic Acids Res. 45(2017) 8014-8025.
doi: 10.1093/nar/gkx470
Y. Ruike, Y. Imanaka, F. Sato, K. Shimizu, G. Tsujimoto, BMC Genomics 11 (2010) 137.
D. Serre, B.H. Lee, A.H. Ting, Nucleic Acids Res. 38(2010) 391-399.
doi: 10.1093/nar/gkp992
T.A. Down, V.K. Rakyan, D.J. Turner, et al., Nat. Biotechnol. 26(2008) 779-785.
doi: 10.1038/nbt1414
J.H. Park, J. Park, J.K. Choi, et al., BMC Med. Genomics 4 (2011) 82.
A.B. Brinkman, F. Simmer, K. Ma, et al., Methods 52(2010) 232-236.
doi: 10.1016/j.ymeth.2010.06.012
B. Yao, Y. Li, Z. Wang, et al., Mol. Cell 71(2018) 848-857.
doi: 10.1016/j.molcel.2018.07.005
C.L. Xiao, S. Zhu, M. He, et al., Mol. Cell 71(2018) 306-318.
doi: 10.1016/j.molcel.2018.06.015
G. Ficz, M.R. Branco, S. Seisenberger, et al., Nature 473(2011) 398-402.
doi: 10.1038/nature10008
K. Williams, J. Christensen, M.T. Pedersen, et al., Nature 473(2011) 343-348.
doi: 10.1038/nature10066
M. Ko, Y. Huang, A.M. Jankowska, et al., Nature 468(2010) 839-843.
doi: 10.1038/nature09586
E.A. Raiber, D. Beraldi, G. Ficz, et al., Genome Biol. 13 (2012) R69.
K.D. Meyer, Y. Saletore, P. Zumbo, et al., Cell 149(2012) 1635-1646.
doi: 10.1016/j.cell.2012.05.003
D. Dominissini, S. Moshitch-Moshkovitz, S. Schwartz, et al., Nature 485(2012) 201-206.
doi: 10.1038/nature11112
S. Schwartz, S.D. Agarwala, M.R. Mumbach, et al., Cell 155(2013) 1409-1421.
doi: 10.1016/j.cell.2013.10.047
B. Linder, A.V. Grozhik, A.O. Olarerin-George, et al., Nat. Methods 12(2015) 767-772.
doi: 10.1038/nmeth.3453
X. Li, X. Xiong, K. Wang, et al., Nat. Chem. Biol. 12(2016) 311-316.
doi: 10.1038/nchembio.2040
D. Dominissini, S. Nachtergaele, S. Moshitch-Moshkovitz, et al., Nature 530(2016) 441-446.
doi: 10.1038/nature16998
D. Arango, D. Sturgill, N. Alhusaini, et al., Cell 175(2018) 1872-1886.
doi: 10.1016/j.cell.2018.10.030
K.D. Hansen, W. Timp, H.C. Bravo, et al., Nat. Genet. 43(2011) 768-775.
doi: 10.1038/ng.865
M.J. Booth, M.R. Branco, G. Ficz, et al., Science 336(2012) 934-937.
doi: 10.1126/science.1220671
H. Zeng, B. He, B. Xia, et al., J. Am. Chem. Soc. 140(2018) 13190-13194.
doi: 10.1021/jacs.8b08297
G. Hayashi, K. Koyama, H. Shiota, et al., J. Am. Chem. Soc. 138(2016) 14178-14181.
doi: 10.1021/jacs.6b06428
M. Yu, G.C. Hon, K.E. Szulwach, et al., Cell 149(2012) 1368-1380.
doi: 10.1016/j.cell.2012.04.027
M.J. Booth, G. Marsico, M. Bachman, D. Beraldi, S. Balasubramanian, Nat. Chem. 6(2014) 435-440.
doi: 10.1038/nchem.1893
B. Xia, D. Han, X. Lu, et al., Nat. Methods 12(2015) 1047-1050.
doi: 10.1038/nmeth.3569
X. Lu, C.X. Song, K. Szulwach, et al., J. Am. Chem. Soc. 135(2013) 9315-9317.
doi: 10.1021/ja4044856
M. Schaefer, T. Pollex, K. Hanna, F. Lyko, Nucleic Acids Res. 37 (2009) e12.
J.E. Squires, H.R. Patel, M. Nousch, et al., Nucleic Acids Res. 40(2012) 5023-5033.
doi: 10.1093/nar/gks144
S. Edelheit, S. Schwartz, M.R. Mumbach, O. Wurtzel, R. Sorek, PLoS Genet. 9 (2013) e1003602.
U. Birkedal, M. Christensen-Dalsgaard, N. Krogh, et al., Angew. Chem. Int. Ed. Engl. 54(2015) 451-455.
N. Krogh, M.D. Jansson, S.J. Hafner, et al., Nucleic Acids Res. 44(2016) 7884-7895.
doi: 10.1093/nar/gkw482
Q. Dai, S. Moshitch-Moshkovitz, D. Han, et al., Nat. Methods 14(2017) 695-698.
doi: 10.1038/nmeth.4294
C. Riml, T. Amort, D. Rieder, et al., Angew. Chem. Int. Ed. Engl. 56(2017) 13479-13483.
doi: 10.1002/anie.201707465
A.L. Yablonovitch, P. Deng, D. Jacobson, J.B. Li, PLoS Genet.13 (2017) e1007064.
M. Sakurai, T. Yano, H. Kawabata, H. Ueda, T. Suzuki, Nat. Chem. Biol. 6(2010) 733-740.
doi: 10.1038/nchembio.434
J.M. Thomas, C.A. Briney, K.D. Nance, et al., J. Am. Chem. Soc. 140(2018) 12667-12670.
doi: 10.1021/jacs.8b06636
X. Li, P. Zhu, S. Ma, et al., Nat. Chem. Biol. 11(2015) 592-597.
doi: 10.1038/nchembio.1836
V.A.Herzog, B.Reichholf, T.Neumann, etal., Nat.Methods14(2017)1198-1204.
doi: 10.1038/nmeth.4435
Q.Y. Li, N.B. Xie, J. Xiong, B.F. Yuan, Y.Q. Feng, Anal. Chem. 90(2018) 14622-14628.
doi: 10.1021/acs.analchem.8b04833
E.K. Schutsky, J.E. DeNizio, P. Hu, et al., Nat. Biotechnol. 36(2018) 1083-1090.
doi: 10.1038/nbt.4204
S.U. Siriwardena, K. Chen, A.S. Bhagwat, Chem. Rev.116(2016) 12688-12710.
doi: 10.1021/acs.chemrev.6b00296
A.E. Cozen, E. Quartley, A.D. Holmes, et al., Nat. Methods 12(2015) 879-884.
doi: 10.1038/nmeth.3508
T. Hong, Y. Yuan, Z. Chen, et al., J. Am. Chem. Soc. 140(2018) 5886-5889.
doi: 10.1021/jacs.7b13633
J. Aschenbrenner, S. Werner, V. Marchand, et al., Angew. Chem. Int. Ed. Engl. 57(2018) 417-421.
doi: 10.1002/anie.201710209
D.P. Morse, B.L. Bass, Biochemistry 36(1997) 8429-8434.
doi: 10.1021/bi9709607
X. Zhao, Y.T. Yu, RNA 10(2004) 996-1002.
doi: 10.1261/rna.7110804
N. Liu, M. Parisien, Q. Dai, et al., RNA 19(2013) 1848-1856.
doi: 10.1261/rna.041178.113
P. Ryvkin, Y.Y. Leung, I.M. Silverman, et al., RNA 19(2013) 1684-1692.
doi: 10.1261/rna.036806.112
C. Gustafsson, B.C. Persson, J. Bacteriol. 180(1998) 359-365.
D. Lafontaine, J. Vandenhaute, D. Tollervey, Gene Dev. 9(1995) 2470-2481.
doi: 10.1101/gad.9.20.2470
Z.W. Dong, P. Shao, L.T. Diao, et al., Nucleic Acids Res. 40 (2012) e157.
A. Bakin, J. Ofengand, Biochemistry 32(1993) 9754-9762.
doi: 10.1021/bi00088a030
B.A. Flusberg, D.R. Webster, J.H. Lee, et al., Nat. Methods 7(2010) 461-465.
doi: 10.1038/nmeth.1459
C. Zhou, C. Wang, H. Liu, et al., Nat. Plants 4(2018) 554-563.
doi: 10.1038/s41477-018-0214-x
Z. Liang, L. Shen, X. Cui, et al., Dev. Cell 45(2018) 406-416.
doi: 10.1016/j.devcel.2018.03.012
C.X. Song, T.A. Clark, X.Y. Lu, et al., Nat. Methods 9(2012) 75-77.
doi: 10.1038/nmeth.1779
I.D. Vilfan, Y.C. Tsai, T.A. Clark, et al., J. Nanobiotechnol. 11 (2013) 8.
B.M. Venkatesan, R. Bashir, Nat. Nanotechnol. 6(2011) 615-624.
doi: 10.1038/nnano.2011.129
J. Clarke, H.C. Wu, L. Jayasinghe, et al., Nat. Nanotechnol. 4(2009) 265-270.
doi: 10.1038/nnano.2009.12
U. Mirsaidov, W. Timp, X. Zou, et al., Biophys. J. 96 (2009) L32-L34.
M. Wanunu, D. Cohen-Karni, R.R. Johnson, et al., J. Am. Chem. Soc.133(2011) 486-492.
doi: 10.1021/ja107836t
X. Lu, C. He, ChemBioChem 14(2013) 1289-1290.
doi: 10.1002/cbic.201300342
W.W. Li, L. Gong, H. Bayley, Angew. Chem. Int. Ed. Engl. 52(2013) 4350-4355.
doi: 10.1002/anie.201300413
M. Ayub, H. Bayley, Nano Lett. 12(2012) 5637-5643.
doi: 10.1021/nl3027873
D. Elmlund, H. Elmlund, Annu. Rev. Biochem. 84(2015) 499-517.
doi: 10.1146/annurev-biochem-060614-034226
S.K. Natchiar, A.G. Myasnikov, H. Kratzat, I. Hazemann, B.P. Klaholz, Nature 551(2017) 472-477.
doi: 10.1038/nature24482
F. Su, L. Wang, Y. Sun, et al., Chem. Commun. (Camb.) 51(2015) 3371-3374.
doi: 10.1039/C4CC07688E
Z.Y. Wang, L.J. Wang, Q. Zhang, B. Tang, C.Y. Zhang, Chem. Sci. 9(2018) 1330-1338.
doi: 10.1039/C7SC04813K
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Yang Feng , Yang-Qing Tian , Yong-Qiang Zhao , Sheng-Jun Chen , Bi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Lihang Wang , Mary Li Javier , Chunshan Luo , Tingsheng Lu , Shudan Yao , Bing Qiu , Yun Wang , Yunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591
Dexuan Xiao , Tianyu Chen , Tianxu Zhang , Sirong Shi , Mei Zhang , Xin Qin , Yunkun Liu , Longjiang Li , Yunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022