Citation: Du Yuqi, Chen Zhengbo, Li Hao, Wang Yi, Fu Peng, Zhu Weiming. Pafuranones A and B, two dimeric polyketides from a rare marine algae-derived fungus Paraconiothyrium sp.[J]. Chinese Chemical Letters, ;2019, 30(5): 981-984. doi: 10.1016/j.cclet.2019.01.034 shu

Pafuranones A and B, two dimeric polyketides from a rare marine algae-derived fungus Paraconiothyrium sp.

    * Corresponding authors.
    E-mail addresses: fupeng@ouc.edu.cn (P. Fu), weimingzhu@ouc.edu.cn (W. Zhu)
  • Received Date: 5 January 2019
    Revised Date: 28 January 2019
    Accepted Date: 31 January 2019
    Available Online: 2 May 2019

Figures(8)

  • Pafuranones A (1) and B (2), a pair of new epimeric polyketide dimers, were isolated from the fungus Paraconiothyrium sp. OUCMDZ-3316 associated with the marine algae Enteromorpha prolifera. Their structures, including absolute configurations, were fully elucidated based on spectroscopic analysis, calculated ECD, and chemical methods. Pafuranones A (1) and B (2) possess a rare dimeric furanone skeleton, which might be formed through a conjugate addition of the monomeric units followed by an intramolecular cyclization.
  • 加载中
    1. [1]

      (a) A. Debbab, A.H. Aly, W.H. Lin, P. Proksch, Microb. Biotechnol. 3(2010) 544-563;
      (b) H. Zhang, Z. Zhao, H. Wang, Mar. Drugs 15(2017) 68;
      (c) E. Tortorella, P. Tedesco, F.P. Esposito, et al., Mar. Drugs 16(2018) 355.

    2. [2]

      (a) J.W. Blunt, A.R. Carroll, B.R. Copp, et al., Nat. Prod. Rep. 35(2018) 8-53;
      (b) J.W. Blunt, B.R. Copp, R.A. Keyzers, et al., Nat. Prod. Rep. 34(2017) 235-294;
      (c) J.W. Blunt, B.R. Copp, R.A. Keyzers, et al., Nat. Prod. Rep. 33(2016) 382-431;
      (d) J.W. Blunt, B.R. Copp, R.A. Keyzers, et al., Nat. Prod. Rep. 32(2015) 116-211;
      (e) J.W. Blunt, B.R. Copp, R.A. Keyzers, et al., Nat. Prod. Rep. 31(2014) 160-258;
      (f) J.W. Blunt, B.R. Copp, R.A. Keyzers, et al., Nat. Prod. Rep. 30(2013) 237-323;
      (g) J.W. Blunt, B.R. Copp, R.A. Keyzers, et al., Nat. Prod. Rep. 29(2012) 144-222;
      (h) J.W. Blunt, B.R. Copp, M.H.G. Munro, et al., Nat. Prod. Rep. 28(2011) 196-268;
      (i) J.W. Blunt, B.R. Copp, M.H.G. Munro, et al., Nat. Prod. Rep. 27(2010) 165-237;
      (j) J.W. Blunt, B.R. Copp, W.P. Hu, et al., Nat. Prod. Rep. 26(2009) 170-244.

    3. [3]

      (a) J. Kjer, A. Debbab, A.H. Aly, P. Proksch, Nat. Protoc. 5(2010) 479-490;
      (b) H. Gao, G. Li, H.-X. Lou, Molecules 23(2018) 646.

    4. [4]

      S.K. Deshmukh, M.K. Gupta, V. Prakash, M.S. Reddy, J. Fungi 4(2018) 101.  doi: 10.3390/jof4030101

    5. [5]

      P. Zhang, X. Li, B.G. Wang, Planta Med. 82(2016) 832-842.  doi: 10.1055/s-00000058

    6. [6]

      (a) P. Fu, F. Kong, X. Li, Y. Wang, W. Zhu, Org. Lett. 16(2014) 3708-3711;
      (b) C. Wang, L. Guo, J. Hao, L. Wang, W. Zhu, J. Nat. Prod. 79(2016) 2977-2981;
      (c) T. Zhu, Z. Lu, J. Fan, et al., J. Nat. Prod. 81(2018) 2-9;
      (d) Y. Fan, Y. Wang, P. Fu, et al., Org. Chem. Front. 5(2018) 2835-2839.

    7. [7]

      (a) K. Sun, G. Zhu, J. Hao, Y. Wang, W. Zhu, Tetrahedron 74(2018) 83-87;
      (b) Y. Du, J. Sun, Q. Gong, et al., J. Agric. Food Chem. 66(2018) 1807-1812.

    8. [8]

      C.J. Chen, Y.Q. Zhou, X.X. Liu, et al., Tetrahedron Lett. 56(2015) 6183-6189.  doi: 10.1016/j.tetlet.2015.09.079

    9. [9]

      M.F. Elsebai, M. Nazir, S. Kehraus, et al., Eur. J. Org. Chem. 2012(2012) 6197-6203.  doi: 10.1002/ejoc.201200700

    10. [10]

      X. Li, M.K. Kim, U. Lee, et al., Chem. Pharm. Bull. 53(2005) 453-455.  doi: 10.1248/cpb.53.453

    11. [11]

      M.F. Elsebai, S. Kehraus, U. Lindequist, et al., Org. Biomol. Chem. 9(2011) 802-808.  doi: 10.1039/C0OB00625D

    12. [12]

      C. Iwamoto, T. Yamada, Y. Ito, K. Minoura, A. Numata, Tetrahedron 57(2001) 2997-3004.  doi: 10.1016/S0040-4020(01)00153-3

    13. [13]

      A. Numata, C. Takahashi, Y. Ito, et al., J. Chem. Soc. Perkin Trans. 1(3) (1996) 239-245.
       

    14. [14]

      C. Iwamoto, K. Minoura, T. Oka, et al., Tetrahedron 55(1999) 14353-14368.  doi: 10.1016/S0040-4020(99)00884-4

    15. [15]

      C. Iwamoto, K. Minoura, S. Hagishita, K. Nomoto, A. Numata, Tetrahedron 3(1998) 449-456.
       

    16. [16]

      C. Takahashi, A. Numata, T. Yamada, et al., Tetrahedron Lett. 37(1996) 655-658.  doi: 10.1016/0040-4039(95)02225-2

    17. [17]

      A. Numata, C. Takahashi, Y. Ito, et al., Tetrahedron Lett. 34(1993) 2355-2358.  doi: 10.1016/S0040-4039(00)77612-X

    18. [18]

      Z. Chen, J. Hao, L. Wang, et al., Sci. Rep. 6(2016) 20004.  doi: 10.1038/srep20004

    19. [19]

      H. Liu, Z. Chen, G. Zhu, et al., Tetrahedron 73(2017) 5451-5455.  doi: 10.1016/j.tet.2017.07.052

    20. [20]

      Y. Li, K.L. Sun, Y. Wang, et al., Chin. Chem. Lett. 24(2013) 1049-1052.  doi: 10.1016/j.cclet.2013.07.028

    21. [21]

      (a) Y. Shiono, T. Hatakeyama, T. Murayama, T. Koseki, Nat. Prod. Commun. 7(2012) 1065-1068;
      (b) M. Vallet, Q.P. Vanbellingen, T. Fu, et al., J. Nat. Prod. 80(2017) 2863-2873
      (c) T. Fujiwara, A. Sato, Y. Kawamura, K. Matsumoto, H. Itazaki, Patent, JP 6239852, 1994.

    22. [22]

      V.H.T. James, J. Chem. Soc. (1955) 637-639.  doi: 10.1039/jr9550000637

    23. [23]

      K. Weinges, E. Paulus, Eur. J. Org. Chem. 681(1965) 154-161.

    24. [24]

      (a) von C. Djerassi, Optical Rotatory Dispersion: Applications to Organic Chemistry, McGraw-Hill, New York, 1960;
      (b) L. Velluz, M.L. Grand, M. Grosjean, Optical Circular, Dichroism: Principles, Measurements, and Applications, Academic Press, New York, 1965;
      (c) S. Lin, T. Shi, K. Chen, et al., Chem. Commun. 47(2011) 10413-10415;
      (d) P. Fu, J.B. MacMillan, Org. Lett. 17(2015) 3046-3049;
      (e) P. Fu, S. La, J.B. MacMillan, J. Nat. Prod. 79(2016) 455-462.

    25. [25]

      P.J. Stephens, J.J. Pan, K. Krohn, J. Org. Chem. 72(2007) 7641-7649.  doi: 10.1021/jo071183b

    26. [26]

      Y.K. Zheng, X.G. Qiao, C.P. Miao, et al., Ann. Microbiol. 66(2016) 529-542.  doi: 10.1007/s13213-015-1153-7

    27. [27]

      M. Cloete, P.H. Fourie, U. Damm, P.W. Crous, L. Mostert, Phytopathol. Mediterr. 50(2011) 176-190.
       

    28. [28]

      G.J.M. Verkley, M. da Silva, D.T. Wicklow, P.W. Crous, Stud. Mycol. 50(2004) 323-335.
       

    29. [29]

      J.M. Whipps, M. Gerlagh, Mycol. Res. 96(1992) 897-907.  doi: 10.1016/S0953-7562(09)80588-1

    30. [30]

      U. Damm, G.J.M. Verkley, P.W. Crous, et al., Persoonia 20(2008) 9-17.  doi: 10.3767/003158508X286842

    31. [31]

      I.E. Mohamed, S. Kehraus, A. Krick, et al., J. Nat. Prod. 73(2010) 2053-2056.  doi: 10.1021/np100310k

    32. [32]

      C.X. Liu, L. Wang, J.F. Chen, et al., Magn. Reson. Chem. 53(2015) 317-322.  doi: 10.1002/mrc.v53.4

    33. [33]

      F. Ren, S. Chen, Y. Zhang, et al., J. Nat. Prod. 81(2018) 1752-1759.  doi: 10.1021/acs.jnatprod.8b00106

    34. [34]

      M.A. Colombier, A. Alanio, B. Denis, et al., J. Clin. Microbiol. 53(2015) 2084-2094.  doi: 10.1128/JCM.00295-15

    35. [35]

      T. Suzuki, N.R. Ariefta, T. Koseki, et al., Fitoterapia 132(2019) 75-81.  doi: 10.1016/j.fitote.2018.11.017

    36. [36]

      C. Anisha, P. Sachidanandan, E.K. Radhakrishnan, Curr. Microbiol. 75(2018) 343-352.  doi: 10.1007/s00284-017-1387-7

    37. [37]

      T.H. Quang, D.C. Kim, P. van Kiem, et al., J. Antibiot. 71(2018) 826-830.  doi: 10.1038/s41429-018-0073-8

    38. [38]

      N. Cho, T.T. Ransom, J. Sigmund, et al., J. Nat. Prod. 80(2017) 2037-2044.  doi: 10.1021/acs.jnatprod.7b00170

    39. [39]

      S. Chen, Y. Zhang, C. Zhao, et al., Fitoterapia 99(2014) 236-242.  doi: 10.1016/j.fitote.2014.09.021

    40. [40]

      S. Chen, Y. Zhang, S. Niu, X. Liu, Y. Che, J. Nat. Prod. 77(2014) 1513-1518.  doi: 10.1021/np500302e

    41. [41]

      Y. Shiono, M. Kikuchi, T. Koseki, et al., Phytochemistry 72(2011) 1400-1405.  doi: 10.1016/j.phytochem.2011.04.016

    42. [42]

      X. Li, X. He, L. Hou, et al., Sci. Rep. 8(2018) 7896.  doi: 10.1038/s41598-018-26183-0

    43. [43]

      H. Forootanfar, M.A. Faramarzi, A.R. Shahverdi, M.T. Yazdi, Bioresour. Technol. 102(2011) 1808-1814.  doi: 10.1016/j.biortech.2010.09.043

    44. [44]

      Z. Guo, F. Ren, Y. Che, G. Liu, L. Liu, Molecules 20(2015) 14611-14620.
       

    45. [45]

      L. Liu, X. Chen, D. Li, et al., J. Nat. Prod. 78(2015) 746-753.  doi: 10.1021/np5009569

    46. [46]

      H.Y. Tang, Q. Zhang, Y.Q. Gao, et al., RSC Adv. 5(2015) 2185-2190.  doi: 10.1039/C4RA11712C

  • 加载中
    1. [1]

      Zheng-Biao ZouTai-Zong WuChun-Lan XieYuan WangYan LiGang ZhangRong ChaoLian-Zhong LuoLi-Sheng LiXian-Wen Yangneo-Dicitrinols A–C: Unprecedented PKS-NRPS hybrid citrinin dimers with ferroptosis inhibitory activity from the deep-sea-derived Penicillium citrinum W22. Chinese Chemical Letters, 2024, 35(12): 109723-. doi: 10.1016/j.cclet.2024.109723

    2. [2]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    3. [3]

      Qi TanRun-Zhu FanWencong YangGe ZouTao ChenJianying WuBo WangSheng YinZhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390

    4. [4]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    5. [5]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    6. [6]

      Shuige ZhaoPengcheng YanPeipei LiuHaishan LiuNing LiPeng FuWeiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950

    7. [7]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    8. [8]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    9. [9]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    10. [10]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    11. [11]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    12. [12]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    13. [13]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    14. [14]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    15. [15]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    16. [16]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

Metrics
  • PDF Downloads(4)
  • Abstract views(745)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return