Citation: Wang Yaoyao, Shen Jun, Chen Qun, Wang Liang, He Mingyang. Nickel-catalysed C-O bond reduction of 2, 4, 6-triaryloxy-1, 3, 5-triazines in 2-methyltetrahydrofuran[J]. Chinese Chemical Letters, ;2019, 30(2): 409-412. doi: 10.1016/j.cclet.2018.09.009 shu

Nickel-catalysed C-O bond reduction of 2, 4, 6-triaryloxy-1, 3, 5-triazines in 2-methyltetrahydrofuran

    * Corresponding authors.
    E-mail addresses: liangwang@cczu.edu.cn (L. Wang), hmy@cczu.edu.cn(M. He)
  • Received Date: 8 June 2018
    Revised Date: 3 September 2018
    Accepted Date: 10 September 2018
    Available Online: 12 February 2018

Figures(7)

  • A nickel-catalysed reduction of phenol derivatives activated by 2, 4, 6-trichloro-1, 3, 5-triazine (TCT) in ecofriendly 2-methyltetrahydrofuran (2-MeTHF) is described. The phenol-TCT derivatives were readily prepared using grinding method in short time without further purification. This catalytic system allowed the facile C-O cleavage of phenol-TCT derivatives under mild reaction conditions with high efficiency and good functional group tolerance. Gram-scale reaction was also achieved. Particularly, sequential functionalization of phenol-TCT derivatives followed by C-O bond reduction could also be realized, affording the high value-added products in moderate to good yields.
  • 加载中
    1. [1]

      B.M.Rosen, K.W.Quasdorf, D.A.Wilson, et al., Chem.Rev.111(2011) 1346-1416.  doi: 10.1021/cr100259t

    2. [2]

      B.Li, D.Yu, C.Sun, Z.Shi, Chem.Eur.J.17(2011) 1728-1759.  doi: 10.1002/chem.201002273

    3. [3]

      T.Mesganaw, N.K.Garg, Org.Process Res.Dev.17(2013) 29-39.  doi: 10.1021/op300236f

    4. [4]

      J.Cornella, C.Zarate, R.Martin, Chem.Soc.Rev.43(2014) 8081-8097.  doi: 10.1039/C4CS00206G

    5. [5]

      M.Tobisu, N.Chatani, Acc.Chem.Res.48(2015) 1717-1726.  doi: 10.1021/acs.accounts.5b00051

    6. [6]

      X.Cong, H.Tang, X.Zeng, J.Am.Chem.Soc.137(2015) 14367-14372.  doi: 10.1021/jacs.5b08621

    7. [7]

      W.Shi, X.Li, Z.Li, Z.Shi, Org.Chem.Front.3(2016) 375-379.  doi: 10.1039/C5QO00395D

    8. [8]

      J.Tang, M.Luo, X.Zeng, Synlett 28(2017) 2577-2580.  doi: 10.1055/s-0036-1588568

    9. [9]

      H.Zeng, Z.Qiu, A.Domínguez-Huerta, et al., ACS Catal.7(2017) 510-519.  doi: 10.1021/acscatal.6b02964

    10. [10]

      (a) X. Jia, S. Zhang, W. Wang, F. Luo, J. Cheng, Org. Lett. 11 (2009) 3120-3123;
      (b) J. Chu, P. Lin, M. Wu, Organometallics 29 (2010) 4058-4065;
      (c) L. Ackermann, E. Diers, A. Manvar, Org. Lett. 14 (2012) 1154-1157;
      (d) M. Kim, S. Sharma, J. Park, et al., Tetrahedron 69 (2013) 6552-6559;
      (e) J. Yao, R. Feng, Z. Wu, Z. Liu, Y. Zhang, Adv. Synth. Catal. 355 (2013) 1517-1522;
      (f) B. Liu, H. Jiang, B. Shi, Org. Biomol. Chem. 12 (2014) 2538-2542;
      (g) N. Khatun, A. Banerjee, S. K. Santra, A. Behera, B. K. Patel, RSC Adv. 4 (2014) 54532-54538;
      (h) B. Liu, H. Jiang, B. Shi, J. Org. Chem. 79 (2014) 1521-1526;
      (i) W. Zhang, J. Zhang, S. Ren, Y. Liu, J. Org. Chem. 79 (2014) 11508-11516;
      (j) C. Zhang, P. Sun, J. Org. Chem. 79 (2014) 8457-8461;
      (k) Y. Xu, P. Liu, S. Li, P. Sun, J. Org. Chem. 80 (2015) 1269-1274;
      (l) M. K. Raghuvanshi, K. Rauch, L. Ackermann, Chem. Eur. J. 21 (2015) 1790-1794;
      (m) Y. Liang, X. Li, X. Wang, et al., ACS Catal. 5 (2015) 1956-1963;
      (n) J. Chu, S. Chen, M. Chiang, M. Wu, Organometallics 34 (2015) 953-966;
      (o) H. Lou, Q. Chen, Y. Wang, et al., ACS Catal. 5 (2015) 2846-2849.

    11. [11]

      H.Xu, K.Muto, J.Yamaguchi, et al., J.Am.Chem.Soc.136(2014) 14834-14844.  doi: 10.1021/ja5071174

    12. [12]

      L.Wang, L.Pan, Y.Huang, Q.Chen, M.He, Eur.J.Org.Chem.2016(2016) 3113-3118.  doi: 10.1002/ejoc.201600508

    13. [13]

      H.Kinuta, M.Tobisu, N.Chatani, J.Am.Chem.Soc.137(2015) 1593-1600.  doi: 10.1021/ja511622e

    14. [14]

      M.Tobisu, J.Zhao, H.Kinuta, et al., Adv.Synth.Catal.358(2016) 2417-2421.  doi: 10.1002/adsc.201600336

    15. [15]

      J.Li, X.Wang, Org.Lett.19(2017) 3723-3726.  doi: 10.1021/acs.orglett.7b01549

    16. [16]

      C.J.Rohbogner, G.C.Clososki, P.Knochel, Angew.Chem.Int.Ed.47(2008) 1503-1507.
       

    17. [17]

      N.Z.Burns, I.N.Krylova, R.N.Hannoush, P.S.Baran, J.Am.Chem.Soc.131(2009) 9172-9173.  doi: 10.1021/ja903745s

    18. [18]

      (a) V. Kogan, Tetrahedron Lett. 47 (2006) 7515-7518;
      (b) B. H. Lipshutz, B. A. Frieman, T. Butler, V. Kogan, Angew. Chem. Int. Ed. 45 (2006) 800-803;
      (c) P. Alvarez-Bercedo, R. Martin, J. Am. Chem. Soc. 132 (2010) 17352-17353;
      (d) M. Tobisu, K. Yamakawa, T. Shimasaki, N. Chatani, Chem. Commun. 47 (2011) 2946-2948;
      (e) A. G. Sergeev, J. F. Hartwig, Science 332 (2011) 439-443;
      (f) A. G. Sergeev, J. D. Webb, J. F. Hartwig, J. Am. Chem. Soc. 134 (2012) 20226-20229;
      (g) J. Cornella, E. Gómez-Bengoa, R. Martin, J. Am. Chem. Soc. 135 (2013) 1997-2009;
      (h) Y. Ren, M. Yan, J. Wang, Z. C. Zhang, K. Yao, Angew. Chem. Int. Ed. 51 (2013) 12674-12678;
      (i) M. Tobisu, T. Morioka, A. Ohtsuki, N. Chatani, Chem. Sci. 6 (2015) 3410-3414;
      (j) A. Ohgi, Y. Nakao, Chem. Lett. 45 (2016) 45-47;
      (k) E. M. Wiensch, D. P. Todd, J. Montgomery, ACS Catal. 7 (2017) 5568-5571;
      (l) K. Yasui, M. Higashino, N. Chatani, M. Tobisu, Synlett 28 (2017) 2569-2572.

    19. [19]

      J.Li, Z.Wang, Chem.Commun.54(2018) 2138-2141.  doi: 10.1039/C7CC09668B

    20. [20]

      (a) C. J. E. Davies, M. J. Page, C. E. Ellul, M. F. Mahon, M. K. Whittlesey, Chem. Commun. 46 (2010) 5151-5153;
      (b) Y. Yi, W. Yang, D. Zhai, et al., Chem. Commun. 52 (2016) 10894-10897.

    21. [21]

      (a) D. F. Aycock, Org. Process Res. Dev. 11 (2007) 156-159;
      (b) V. Pace, P. Hoyos, L. Castoldi, P. D. de Maria, A. R. Alcantara, ChemSusChem 5 (2012) 1369-1379;
      (c) Y. Gu, F. Jerome, Chem. Soc. Rev. 42 (2013) 9550-9570;
      (d) A. Farran, C. Cai, M. Sandoval, et al., Chem. Rev. 115 (2015) 6811-6853;
      (e) R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sadaba, M. Lopez Granados, Energy Environ. Sci. 9 (2016) 1144-1189.

    22. [22]

      (a) N. Iranpoor, F. Panahi, Adv. Synth. Catal. 356 (2014) 3067-3073;
      (b) N. Iranpoor, F. Panahi, Org. Lett. 17 (2015) 214-217;
      (c) N. Iranpoor, F. Panahi, F. Jamedi, J. Organomet. Chem. 781 (2015) 6-10;
      (d) E. Etemadi-Davan, N. Iranpoor, Chem. Commun. 53 (2017) 12794-12797.

    23. [23]

      W.Ma, L.Ackermann, Chem.Eur.J.19(2013) 13925-13928.  doi: 10.1002/chem.201301988

  • 加载中
    1. [1]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    2. [2]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    3. [3]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    4. [4]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    5. [5]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    6. [6]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    7. [7]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    8. [8]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    9. [9]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    10. [10]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    11. [11]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    12. [12]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    13. [13]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    14. [14]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    15. [15]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    16. [16]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    17. [17]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    18. [18]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    19. [19]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    20. [20]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

Metrics
  • PDF Downloads(5)
  • Abstract views(715)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return