Citation: Sun Wei, Jiang Feng, Liu Honglei, Gao Xing, Jia Hao, Zhang Cheng, Guo Hongchao. Double [3+2] cycloaddition of nitrile oxides with allenoates: Synthesis of spirobidihydroisoxazoles[J]. Chinese Chemical Letters, ;2019, 30(2): 363-366. doi: 10.1016/j.cclet.2018.04.024 shu

Double [3+2] cycloaddition of nitrile oxides with allenoates: Synthesis of spirobidihydroisoxazoles

    * Corresponding authors.
    E-mail addresses: gilbertcheung@qq.com (C. Zhang), hchguo@cau.edu.cn (H. Guo)
  • Received Date: 9 February 2018
    Revised Date: 5 April 2018
    Accepted Date: 18 April 2018
    Available Online: 24 February 2018

Figures(3)

  • The double [3+2] cycloaddition of allenoates with nitrile oxides is presented. The reaction worked well under mild reaction conditions to give the spirobidihydroisoxazole in moderate to excellent yields with excellent diastereoselectivities. The two dihydroisoxazole rings have been formed via a sequential double [3+2] cycloaddition.
  • 加载中
    1. [1]

      (a) M. Sannigrahi, Tetrahedron 55 (1999) 9007-9071;
      (b) S. Kotha, A.C. Deb, K. Lahiri, E. Manivannan, Synthesis 2 (2009) 165-193;
      (c) O.O. Grygorenko, D.S. Radchenko, D.M. Volochnyuk, A.A. Tolmachev, I.V. Komarov, Chem. Rev. 111 (2011) 5506-5568.

    2. [2]

      (a) P.R. Berquist, R.J. Wells, Bioactive marine biopolymers, in: P.J. Scheuer (Ed.), Marine Natural Products, Elsevier Inc., New York, 1983, pp. 391-427;
      (b) F. Perron, K.F. Albizati, Chem. Rev. 89 (1989) 1617-1661;
      (c) P.R. Berquist, R.J. Wells, Chemotaxonomy of the porifera: the development and current status of the field, in: P.J. Scheuer (Ed.), Marine Natural Products, Elsevier Inc., New York, 1983, pp. 1-50;
      (d) G.M. Konig, A.D. Wright, Heterocycles 36 (1993) 1351-1358;
      (e) A.A. Alahmadi, M.F. El-zohryt, J. Chem. Technol. Biotechnol. 62 (1995) 366-372;
      (f) G.L. Arutyunyan, A.A. Chachoyan, T.E. Agadzhanyan, B.T. Garibdzhanyan, Pharm. Chem. J. 30 (1996) 739-741;
      (g) M.H. Chen, P.P. Pollard, A.A. Patchett, et al., Bioorg. Med. Chem. Lett. 9 (1999) 1261-1266;
      (h) R.D. Encarnación, E. Sandoval, J. Malmstrøm, C. Christophersen, J. Nat. Prod. 63 (2000) 874-875;
      (i) V.M. Kisel, E.O. Kostyrko, V.A. Kovtunenko, Chem. Heterocycl. Comp. 38 (2004) 1295-1318;
      (j) B.S. Lukyanov, M.B. Lukyanov, Chem. Heterocycl. Comp. 41 (2006) 281-311;
      (k) Ö. Güzel, E. Ilhan, A. Salman, Monatsh. Chem. 137 (2006) 795_-801;
      (l) N.S. Joshi, B.K. Karale, C.H. Gill, Chem. Heterocycl. Compd. 42 (2006) 681-685;
      (m) H. Habib-Zahmani, J. Viala, S. Hacini, J. Rodriguez, Synlett 7 (2007) 1037-1042.

    3. [3]

      (a) S. Kotha, A.C. Deb, K. Lahiri, E. Manivannan, Synthesis 2 (2009) 165-194;
      (b) R. Rios, Chem. Soc. Rev. 41 (2012) 1060-1074;
      (c) Z.Y. Cao, X. Wang, C. Tan, et al., J. Am. Chem. Soc. 135 (2013) 8197-8200;
      (d) Y.L. Liu, X. Wang, Y.L. Zhao, et al., Angew. Chem. Int. Ed. 52 (2013) 13735-13739;
      (e) X.P. Yin, X.P. Zeng, Y.L. Liu, et al., Angew. Chem. Int. Ed. 53 (2014) 13740-13745;
      (f) J.S. Yu, F.M. Liao, W.M. Gao, et al., Angew. Chem. Int. Ed. 54 (2015) 7381-7385.

    4. [4]

      A.P. Krapcho, Synthesis 6(1974) 383-419.

    5. [5]

      (a) J.A. Palmes, A. Aponick, Synthesis 44 (2012) 3699-3721;
      (b) V.A. D'Yakonov, O.A. Trapeznikova, A. de Meijere, U.M. Dzhemilev, Chem. Rev. 114 (2014) 5775-5814;
      (c) Z.Y. Cao, J. Zhou, Org. Chem. Front. 2 (2015) 849-858;
      (d) T. Nemoto, Y. Hamada, Synlett 27 (2016) 2301-2313.

    6. [6]

      J. Sperry, Y.C. Liu, M.A. Brimble, Org. Biomol. Chem. 8(2010) 29-38.  doi: 10.1039/B916041H

    7. [7]

      L.K. Smith, I.R. Baxendale, Org. Biomol. Chem. 13(2015) 9907-9933.  doi: 10.1039/C5OB01524C

    8. [8]

      (a) K. Undheim, J. Efskind, Tetrahedron 56 (2000) 4847-4857;
      (b) N.Y. Kuznetsov, Y.N. Bubnov, Russ. Chem. Rev. 84 (2015) 758-785.

    9. [9]

      M.A. Rizzacasa, A. Pollex, Org. Biomol. Chem. 7(2009) 1053-1059.  doi: 10.1039/b819966n

    10. [10]

      (a) G.P. Savage, Curr. Org. Chem. 14 (2010) 1478-1499;
      (b) N. Arumugam, R.S. Kumar, A.I. Almansour, S. Perumal, Curr. Org. Chem. 17 (2013) 1929-1956;
      (c) E.M. Hussein, 1, 3-Dipolar cycloadditions approach to bioactive spiroheterocycles, in: K.L. Ameta, R.P. Pawar, A.J. Domb (Eds.), Bioactive Heterocycles: Synthesis and Biological evaluation, Nova Science Publishers Inc., New York, 2013, pp. 157-186;
      (d) P.W. Xu, J.K. Liu, L. Shen, et al., Nat. Commun. 8 (2017) 1619-1626;
      (e) Y.N. Gao, M. Shi, Chin. Chem. Lett. 28 (2017) 493-502.

    11. [11]

      (a) A.P. Krapcho, Synthesis 7 (1976) 425-444;
      (b) A. Nakazaki, S. Kobayashi, Synlett 23 (2012) 1427-1445.

    12. [12]

      (a) M.A. Arai, T. Arai, H. Sasai, Org. Lett. 1 (1999) 1795-1797;
      (b) M.A. Arai, M. Kuraishi, T. Arai, H. Sasai, J. Am. Chem. Soc. 123 (2001) 2907-2908.

    13. [13]

      G. Broggini, G. Molteni, G. Zecchi, J. Org. Chem. 59(1994) 8271-8274.  doi: 10.1021/jo00105a055

    14. [14]

      (a) H.L. Liu, H. Jia, B. Wang, Y.M. Xiao, H.C. Guo, Org. Lett. 19 (2017) 4714-4717;
      (b) R.S. Na, C.F. Jing, Q.H. Xu, et al., J. Am. Chem. Soc. 133 (2011) 13337-13348;
      (c) R.S. Na, H.L. Liu, Z. Li, et al., Tetrahedron 68 (2012) 2349-2356;
      (d) J. Liu, H.L. Liu, R.S. Na, et al., Chem. Lett. 41 (2012) 218-220;
      (e) C.F. Jing, R.S. Na, B. Wang, et al., Adv. Synth. Catal. 354 (2012) 1023-1034;
      (f) X. Wu, R.S. Na, H.L. Liu, et al., Tetrahedron. Lett. 53 (2012) 342-344;
      (g) L. Zhang, C.F. Jing, H.L. Liu, et al., Synthesis 45 (2013) 53-64;
      (h) Z. Li, H. Yu, L. Zhang, et al., Lett. Org. Chem. 11 (2014) 220-224;
      (i) L. Zhang, H.L. Liu, G.Y. Qiao, et al., J. Am. Chem. Soc. 137 (2015) 4316-4319;
      (j) Z. Li, H. Yu, Y.L. Feng, et al., RSC Adv. 5 (2015) 34481-34485;
      (k) F.L. Li, J.F. Chen, Y.D. Hou, et al., Org. Lett. 17 (2015) 5376-5379;
      (l) H.L. Liu, Y. Liu, C.F. Yuan, et al., Org. Lett. 18 (2016) 1302-1305;
      (m) C.H. Yuan, L.J. Zhou, M.R. Xia, et al., Org. Lett. 18 (2016) 5644-5647;
      (n) Z. Li, H. Yu, Y. Liu, et al., Adv. Synth. Catal. 358 (2016) 1880-1885;
      (o) X. Zhang, C.H. Yuan, C. Zhang, et al., Tetrahedron 72 (2016) 8274-8281;
      (p) L.J. Zhou, C.H. Yuan, C. Zhang, et al., Adv. Synth. Catal. 359 (2017) 2316-2321;
      (q) C. Wang, H. Jia, C. Zhang, et al., J. Org. Chem. 82 (2017) 633-641;
      (r) B. Mao, W. Shi, J. Liao, et al., Org. Lett. 19 (2017) 6340-6343;
      (s) B. Wang, H. Liu, Q. Wang, et al., Tetrahedron 73 (2017) 5926-5931;
      (t) W. Yang, W. Sun, C. Zhang, et al., ACS Catal. 7 (2017) 3142-3146;
      (u) L. Zhou, C. Yuan, Y. Zeng, et al., Chem. Sci. 9 (2018) 1831-1835.

    15. [15]

      (a) A. Sysak, B. Obminska-Mrukowicz, Eur. J. Med. Chem. 137 (2017) 292-309;
      (b) K. Kaur, V. Kumar, A.K. Sharma, G.K. Gupta, Eur. J. Med. Chem. 77 (2014) 121-133;
      (c) G.N. Pairas, F. Perperopoulou, P.G. Tsoungas, G. Varvounis, ChemMedChem 12 (2017) 408-419;
      (d) A. Pinto, L. Tamborini, G. Cullia, P. Conti, C. De Micheli, ChemMedChem 11 (2016) 10-14;
      (e) S. Muthusamy, S.M. Lee, M. Huang, et al., Bull. Korean Chem. Soc. 37 (2016) 1020-1028;
      (f) J.E. Casida, Chem. Res. Toxicol. 28 (2015) 560-566;
      (g) F. Beugnet, J. Liebenberg, L. Halos, Vet. Parasitol. 209 (2015) 142-145;
      (h) C. Zhao, J.E. Casida, J. Agric. Food. Chem. 62 (2014) 1019-1024;
      (i) A. Pinto, P. Conti, M. De Amici, et al., J. Med. Chem. 51 (2008) 2311-2315.

    16. [16]

      (a) H. Suga, Y. Hashimoto, Y. Toda, et al., Angew. Chem. Int. Ed. 56 (2017) 11936-11939;
      (b) V.A. Lofstrand, F.G. West, Chem. Eur. J. 22 (2016) 10763-10767;
      (c) K.S. Vinay Kumar, G.S. Lingaraju, Y.K. Bommegowda, et al., RSC Adv. 5 (2015) 90408-90421;
      (d) T. Ikawa, H. Kaneko, S. Masuda, et al., Org. Biomol. Chem. 13 (2015) 520-526;
      (e) Y. Yamashita, Y. Hirano, A. Takada, H. Takikawa, K. Suzuki, Angew. Chem. Int. Ed. 52 (2013) 6658-6661;
      (f) E.M. Beccalli, G. Broggini, M. Martinelli, N. Masciocchi, S. Sottocornola, Org. Lett. 8 (2006) 4521-4524;
      (g) O. Altintas, M. Glassner, C. Rodriguez-Emmenegger, et al., Angew. Chem. Int. Ed. 54 (2015) 5777-5783;
      (h) F. Friscourt, C.J. Fahrni, G.J. Boons, Chem. Eur. J. 21 (2015) 13996-14001;
      (i) B.K. Kuruba, S. Vasanthkumar, Tetrahedron 73 (2017) 3860-3865;
      (j) J.A. Crossley, D.L. Browne, J. Org. Chem. 75 (2010) 5414-5416;
      (k) H. Zheng, R. McDonald, D.G. Hall, Chem. Eur. J. 16 (2010) 5454-5460;
      (l) O. Jackowski, T. Lecourt, L. Micouin, Org. Lett. 13 (2011) 5664-5667;
      (m) X. Xu, D. Shabashov, P.Y. Zavalij, M.P. Doyle, Org. Lett. 14 (2012) 800-803;
      (n) G. Molteni, P. Del Buttero, Tetrahedron 67 (2011) 7343-7347;
      (o) M.A. Hofmann, U. Bergsträßer, G.J. Reiß, L. Nyulászi, M. Regitz, Angew. Chem. Int. Ed. 39 (2000) 1261-1263;
      (p) H. Suga, Y. Adachi, K. Fujimoto, et al., J. Org. Chem. 74 (2009) 1099-1113;
      (q) P. Quadrelli, M. Mella, S. Carosso, B. Bovio, P. Caramella, Eur. J. Org. Chem. 2007 (2007) 6003-6015;
      (r) C.K. Lee, A.B. Holmes, B. Al-Duri, et al., Chem. Commun. 2004 (2004) 2622-2623;
      (s) T. Rispens, J.B.F.N. Engberts, J. Org. Chem. 68 (2003) 8520-8528;
      (t) P. Quadrelli, V. Fassardi, A. Cardarelli, P. Caramella, Eur. J. Org. Chem. 2002 (2002) 2058-2065;
      (u) C. Zorn, B. Anichini, A. Goti, et al., J. Org. Chem. 64 (1999) 7846-7855;
      (v) A. Mack, B. Breit, T. Wettling, et al., Angew. Chem. Int. Ed. 36 (1997) 1337-1340;
      (w) R. Huisgen, R. Temme, Eur. J. Org. Chem. 1998 (1998) 387-401;
      (x) W.S. Chung, T.L. Tsai, C.C. Ho, M.Y.N. Chiang, W.J. le Noble, J. Org. Chem. 62 (1997) 4672-4676;
      (y) L. Bruche, M.L. Gelmi, G. Zecchi, J. Org. Chem. 50 (1985) 3206-3208.

  • 加载中
    1. [1]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    2. [2]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    5. [5]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    6. [6]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    7. [7]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    8. [8]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    9. [9]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    10. [10]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    11. [11]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    12. [12]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    13. [13]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    14. [14]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    15. [15]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    16. [16]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    17. [17]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    18. [18]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    19. [19]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    20. [20]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

Metrics
  • PDF Downloads(8)
  • Abstract views(782)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return