Citation: Wei Ting, Zeng Yongming, He Wei, Geng Lili, Hong Liang. A facile transformation of alkynes into α-amino ketones by an N-bromosuccinimide-mediated one-pot strategy[J]. Chinese Chemical Letters, ;2019, 30(2): 383-385. doi: 10.1016/j.cclet.2018.03.031 shu

A facile transformation of alkynes into α-amino ketones by an N-bromosuccinimide-mediated one-pot strategy

    * Corresponding author at: Department of Chemistry and Applied Chemistry, Changji University, Changji 831100, China.
    E-mail address: zym903@126.com (Y. Zeng)
  • Received Date: 8 February 2018
    Revised Date: 16 March 2018
    Accepted Date: 26 March 2018
    Available Online: 27 February 2018

Figures(4)

  • A facile transformation of alkynes into α-amino ketones by an N-bromosuccinimide-mediated one-pot cascade strategy is described. A variety of α-amino ketones are obtained in moderate to good yields under mild conditions. To overcome the multi-step synthesis, N-bromosuccinimide is involved in multiple tasks, playing a key role in the reaction course.
  • 加载中
    1. [1]

      (a) A.J. Eshleman, K.M. Wolfrum, M.G. Hatfield, et al., Biochem. Pharmacol. 85 (2013) 1803-1815;
      (b) B.E. Blough, A. Landavazo, J.S. Partilla, et al., ACS Med. Chem. Lett. 5 (2014) 623-627;
      (c) S. Guha, V. Rajeshkumar, S.S. Kotha, G. Sekar, Org. Lett. 17 (2015) 406-409;
      (d) R. Kolanos, J.S. Partilla, M.H. Baumann, et al., ACS Chem. Neurosci. 6 (2015) 771-777;
      (e) F.I. Carrol, B.E. Blough, P. Abraham, et al., J. Med. Chem. 52 (2009) 6768-6781;
      (f) K. Cameron, R. Kolanos, R. Verkariya, L.D. Felice, R.A. Glennon, Psychopharmacology 227 (2013) 493-499.

    2. [2]

      (a) L. He, J. Pian, J. Shi, G. Du, B. Dai, Tetrahedron 70 (2014) 2400-2405;
      (b) F. Carroll, B. Blough, P. Abraham, et al., J. Med. Chem. 52 (2009) 6768-6781;
      (c) T. Sehl, Z. Maugeri, D. Rother, J. Mol. Catal. B: Enzym. 114 (2015) 65-71;
      (d) L. Frolova, N. Evdokimov, K. Hayden, et al., Org. Lett. 13 (2011) 1118-1121;
      (e) W. Wei, Y. Shao, H. Hu, et al., J. Org. Chem. 77 (2012) 7157-7165.

    3. [3]

      (a) P. Selig, Angew. Chem. Int. Ed. 52 (2013) 7080-7082;
      (b) S. Guha, V. Rajeshkumar, S.S. Kotha, G. Sekar, Org. Lett. 17 (2015) 406-409;
      (c) S.L. McDonald, Q. Wang, Chem. Commun. 50 (2014) 2535-2538;
      (d) F.D. Klingler, Acc Chem. Res. 40 (2007) 1367-1376;
      (e) K.A. Dekorver, H. Li, A.G. Lohse, et al., Chem. Rev. 110 (2010) 5064-5106;
      (f) S. Hoffmann, A.M. Seayad, B. List, Angew. Chem. Int. Ed. 44 (2005) 7424-7427;
      (g) G. Li, Y. Liang, J.C. Antilla, J. Am. Chem. Soc. 129 (2007) 5830-5831;
      (h) W. Wen, Y. Zeng, L. Peng, L. Fu, Q. Guo, Org. Lett. 17 (2015) 3922-3925;
      (i) M.R. Smith, K.K. Hii, Chem. Rev. 111 (2011) 1637-1656.

    4. [4]

      (a) J. Tatar, R. Markovic, M. Stojanovic, M. Baranac-Stojanovic, Tetrahedron Lett. 51 (2010) 4851-4855;
      (b) K. Morri, Y. Thummala, V.R. Doddi, Org. Lett. 17 (2015) 4640-4643;
      (c) H.Y. Choi, D.Y. Chi, Org. Lett. 5 (2003) 411-414;
      (d) H.Y. Choi, D.Y. Chi, J. Am. Chem. Soc. 123 (2001) 9202-9203;
      (e) C. Wu, X. Xin, Z.M. Fu, et al., Green Chem. 19 (2017) 1983-1989;
      (f) W.M. He, L.Y. Xie, Y.Y. Xu, et al., Org. Biomol. Chem. 10 (2012) 3168-3171;
      (g) L.Y. Xie, Y.D. Wu, W.G. Yi, et al., J. Org. Chem. 18 (2013) 9190-9195;
      (h) Z.W. Chen, D.N. Ye, M. Ye, et al., Tetrahedron Lett. 55 (2014) 1373-1375;
      (i) H.X. Zou, W.B. He, Q.Z. Dong, et al., Eur. J. Org. Chem. 2016 (2016) 116-121.

    5. [5]

      (a) G.L. Fisher, R. Burnett, J. Am. Chem. Soc. 137 (2015) 11614-11617;
      (b) Q. Jiang, B. Xu, A. Zhao, et al., J. Org. Chem. 79 (2014) 8750-8756;
      (c) Y. Lv, Y. Li, T. Xiong, et al., Chem. Commun. 50 (2014) 2367-2369;
      (d) J. Majetich, Tetrahedron Lett. 51 (2010) 6830-6834.

    6. [6]

      (a) L.H. Huang, X.B. Zhang, Y.H. Zhang, Org. Lett. 4 (2009) 363-366;
      (b) R.L. Gao, C.S. Yi, ACS Catal. 1 (2011) 544-547.

    7. [7]

      (a) F. Minisci, R. Galli, Tetrahedron Lett. 5 (1964) 3197-3200;
      (b) J.A. Souto, P.B. Becker, A. Iglesias, K. Muniz, J. Am. Chem. Soc. 134 (2012) 15505-15511;
      (c) T. Miura, T. Bitajima, T. Fujii, M. Murakami, J. Am. Chem. Soc. 134 (2012) 194-196;
      (d) T. Sueda, A. Kawada, Y. Urashi, N. Teno, Org. Lett. 15 (2013) 1560-1563;
      (e) R.E. Evans, J.R. Zbieg, S. Zhu, W. Li, D.W.C. Macmillan, J. Am. Chem. Soc. 135 (2013) 16074-16077;
      (f) J.S. Alford, M.L. Davies, Org. Lett. 14 (2012) 6020-6023;
      (g) S. Cacchi, G. Fabrizi, E. Filisti, et al., Org. Biomol. Chem. 10 (2012) 4699-4703.

    8. [8]

      (a) M. Li, H. Yuan, B. Zhao, F. Liang, J. Zhang, Chem. Commun. 50 (2014) 2360-2363;
      (b) W. Gao, F. Hu, Y. Huo, et al., Org. Lett. 17 (2015) 3914-3917;
      (c) A. Sakakura, A. Ukai, K. Ishihara, Nature 445 (2007) 900-903;
      (d) Y. Cai, X. Liu, Y. Hui, et al., Angew. Chem. Int. Ed. 49 (2010) 6160-6164;
      (e) S.M. Walter, F. Kniep, E. Herdtweck, S.M. Huber, Angew. Chem. Int. Ed. 50 (2011) 7187-7191;
      (f) M. Ochiai, K. Miyamoto, T. Kaneaki, S. Hayashi, W. Nakanishi, Science 332 (2011) 448-451.

    9. [9]

      P.K. Prasad, R.N. Reddi, A. Sudalai, Org. Lett. 18(2016) 500-503.  doi: 10.1021/acs.orglett.5b03540

    10. [10]

      M.H. Shinde, U.A. Kshirsagar, Org. Biomol. Chem. 14(2016) 858-861.  doi: 10.1039/C5OB02034D

    11. [11]

      (a) Y. Wei, S. Lin, F. Liang, J. Zhang, Org. Lett. 15 (2013) 852-855;
      (b) Y. Wei, F. Liang, X. Zhang, Org. Lett. 15 (2013) 5186-5189;
      (c) Y. Wei, S. Lin, F. Liang, Org. Lett. 14 (2012) 4202-4205.

    12. [12]

      (a) B. Wang, L. Tang, L.Y. Liu, et al., Green Chem. 19 (2017) 5794-5799;
      (b) N. Ren, J. Nie, J.A. Ma, Green Chem. 18 (2016) 6609-6617;
      (c) D.Q. Dong, S.H. Hao, H. Zhang, Z.L. Wang, Chin. Chem. Lett. 28 (2017) 1597-1599.

  • 加载中
    1. [1]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    2. [2]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    3. [3]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    4. [4]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    5. [5]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    8. [8]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    9. [9]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    10. [10]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    11. [11]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    12. [12]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    13. [13]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    14. [14]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    15. [15]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    16. [16]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    17. [17]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    18. [18]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    19. [19]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    20. [20]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

Metrics
  • PDF Downloads(13)
  • Abstract views(955)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return