Citation: Zhao Yingjie, Yu Xin, Hu Huilan, Hu Xinlong, Raje Sakthi, Angamuthu Raja, Tung Chen-Ho, Wang Wenguang. Synthetic[FeFe]-H2ase models bearing phosphino thioether chelating ligands[J]. Chinese Chemical Letters, ;2018, 29(11): 1651-1655. doi: 10.1016/j.cclet.2018.03.013 shu

Synthetic[FeFe]-H2ase models bearing phosphino thioether chelating ligands

  • Corresponding author: Wang Wenguang, wwg@sdu.edu.cn
  • Received Date: 16 December 2017
    Revised Date: 7 March 2018
    Accepted Date: 12 March 2018
    Available Online: 14 November 2018

Figures(9)

  • A series of {2Fe3S} complexes bearing phosphino thioether chelating ligand were synthesized on the basis of Fe2(Me2pdt)(1, 2-Cy2PC6H4SMe)(CO)4 (Me2pdt=Me2C(CH2S-)2, 1). The disubstituted Fe(Ⅰ)Fe(Ⅰ) compound 1 exhibits a reversible one-electron redox even for[Fe(Ⅰ)Fe(Ⅱ)]+/0 couple. Based on the oxidation of 1 to[1]+, the tri-substituted[Fe(Ⅰ)Fe(Ⅱ)]+ cationic complex[Fe2(Me2pdt)(1, 2-Cy2PC6H4SMe) (PPh3)(CO)3]+ ([2]+) was synthesized. Reduction of[2]+ provided the neutral tri-substituted Fe(Ⅰ)Fe(Ⅰ) compound 2. The substitution of the CO in 1 ligand by PPh3 results in an anodic shift of the FeFeI/FeIFeI couple of 470 mV. Most importantly, this substitution also leads to the Fe-Fe bonds in 1 and 2 with large Lewis basicity difference, i.e. △pKaMeCN~10.
  • 加载中
    1. [1]

      (a) Y. Li, T.B. Rauchfuss, Chem. Rev. 116 (2016) 7043-7077;
      (b) L.C. Song, M.Y. Tang, F.H. Su, et al., Angew. Chem. Int. Ed. 45 (2006) 1130-1133;
      (c) J.A. Kovacs, J.K. Bashkin, R.H. Holm, J. Am. Chem. Soc.107 (1985) 1784-1786;
      (d) H. Abul-Futouh, L.R. Almazahreh, M.K. Harb, et al., Inorg. Chem. 56 (2017) 10437-10451.

    2. [2]

      (a) R.P. Venkateswara, R.H. Holm, Chem. Rev. 104 (2004) 527;
      (b) L.C. Song, H. Tan, A.G. Zhu, Y.Y. Hu, H. Chen, Organometallics 34 (2015) 1730-1741;
      (c) L.C. Song, H.T. Fan, Q.M. Hu, J. Am. Chem. Soc. 124 (2002) 4566-4567;
      (d) D. Chong, I.P. Georgakaki, M.Y. Darensbourg, et al., Dalton Trans. (2003) 4158-4163.

    3. [3]

      (a) L.C. Song, Acc. Chem. Res. 38 (2005) 21-28;
      (b) L.C. Song, Y.L. Li, Q.M. Hu, et al., Inorg. Chem. 49 (2010) 10174-10182;
      (c) L.C. Song, L.D. Zhang, B.B. Liu, et al., Organometallics 36 (2017) 1419-1429;
      (d) S.J. George, Z. Cui, M. Razavet, C.J. Pickett, Chem.-Eur. J. 8 (2002) 4037-4046.

    4. [4]

      (a) K. Fauvel, R. Mathieu, R. Poilblanc, Inorg. Chem. 15 (1976) 976-978;
      (b) U.E. Apfel, F.Y. Pétillon, W. Weigand, et al., [FeFe] Hydrogenase Models: An Overview, in: W. Weigand, P. Schollhammer (Eds.), Bioinspired Catalysis: Metal-Sulfur Complexes, Wiley-VCH Verlag GmbH & Co KGaA, 2014, pp. 79-104;
      (c) S. Ogo, Y. Mori, M. Asano, et al., Angew. Chem. Int. Ed. 56 (2017) 9723-9726;
      (d) Y. Shomura, M. Taketa, Y. Higuchi, et al., Science 357 (2017) 928-932;
      (e) A. Onoda, Y. Kihara, K. Fukumoto, Y. Sano, T. Hayashi, ACS Catal. 4 (2014) 2645-2648.

    5. [5]

      E.M. Shepard, E.S. Boyd, J.B. Broderick, J.W. Peters, Curr. Opin. Chem. Biol. 15(2011) 319-327.
       

    6. [6]

      J.C. Fontecillacamps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107(2007) 4273-4303.  doi: 10.1021/cr050195z

    7. [7]

      A. Silakov, B. Wenk, E. Reijerse, W. Lubitz, Phys. Chem. Chem. Phys. 11(2009) 6592-6599.  doi: 10.1039/b905841a

    8. [8]

      (a) J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 282 (1998) 1853-1858;
      (b) Y. Nicolet, C. Piras, J.C. Fontecilla-Camps, et al., Structure 7 (1999) 13-23.

    9. [9]

      (a) C. Tard, C.J. Pickett, Chem. Rev. 109 (2009) 2245-2274;
      (b) L.Z. Wu, B. Chen, Z.J. Li, C.H. Tung, Acc. Chem. Res. 47 (2014) 2177-2185;
      (c) S.J. Borg, T. Behrsing, C.J. Pickett, et al., J. Am. Chem. Soc. 126 (2004) 16988-16999;
      (d) F. Wang, W.G. Wang, L.Z. Wu, et al., ACS Catal. 2 (2012) 407-416;
      (e) Y. Na, M. Wang, L. Sun, et al., Inorg. Chem. 47 (2008) 2805-2810;
      (f) L.J. Antila, P. Ghamgosar, L. Hammarström, et al., ACS Energy Lett. 1 (2016) 1106-1111;
      (g) A.M. Brown, L.J. Antila, L. Hammarström, et al., J. Am. Chem. Soc.138 (2016) 8060-8063.

    10. [10]

      (a) L.C. Song, Z.Y. Yang, Q.M. Hu, et al., Organometallics 24 (2005) 6126-6135;
      (b) L.C. Song, Q.L. Li, H.B. Song, et al., Dalton Trans. 42 (2013) 1612-1626;
      (c) W.G. Wang, H.Y. Wang, L.Z. Wu, et al., Dalton Trans. 15 (2009) 2712-2720;
      (d) P. Li, M. Wang, L. Sun, et al., Eur. J. Inorg. Chem. 2007 (2007) 3718-3727;
      (e) C.M. Thomas, O. Rüdiger, M.Y. Darensbourg, et al., Organometallics 26 (2007) 3976-3984;
      (f) S. Ezzaher, J.F. Capon, J. Talarmin, Inorg. Chem. 8 (2009) 2-4;
      (g) L.C. Song, F.X. Luo, B.B. Liu, et al., Organometallics 35 (2016) 1399-1408;
      (h) M. Cheng, M. Wang, D. Zheng, L. Sun, Dalton Trans. 45 (2016) 17687-17696;
      (i) D. Zheng, N. Wang, L. Sun, et al., J. Am. Chem. Soc. 136 (2014) 16817-16823.

    11. [11]

      (a) M. Razavet, X. Liu, C.J. Pickett, Dalton Trans. 236 (2003) 586-595;
      (b) U.P. Apfel, Y. Halpin, H. Görls, J.G. Vos, W. Weigand, Eur. J. Inorg. Chem. 2011 (2011) 581-588.

    12. [12]

      (a) J.W. Tye, J. Lee, M.Y. Darensbourg, Inorg. Chem. 44 (2005) 5550-5552;
      (b) D. Morvan, J.F. Capon, F. Gloaguen, et al., Organometallics 26 (2017) 2042-2052;
      (c) J.F. Capon, S.E. Hassnaoui, F. Gloaguen, et al., Organometallics 24 (2005) 2020-2022.

    13. [13]

      (a) X. Zhao, I.P. Georgakaki, M.Y. Darensbourg, et al., J. Am. Chem. Soc. 123 (2001) 9710-9711;
      (b) J.A. Wright, C.J. Pickett, Chem. Commun. 45 (2009) 5719-5721;
      (c) A. Jablonskyte, J.A. Wright, C.J. Pickett, Dalton Trans. 39 (2010) 3026-3034.

    14. [14]

      (a) W. Wang, M.J. Nilges, T.B. Rauchfuss, M. Stein, J. Am. Chem. Soc.135 (2013) 3633-3639;
      (b) A. Jablonskyte, J.A. Wright, C.J. Pickett, et al., J. Am. Chem. Soc. 133 (2011) 18606.

    15. [15]

      (a) S. Ezzaher, J.F. Capon, N. Kervarec, Inorg. Chem. 46 (2007) 3426-3428;
      (b) B.E. Barton, T.B. Rauchfuss, S.R. Wilson, et al., DaltonTrans. 39 (2010) 3011-3019.

    16. [16]

      (a) R. Zaffaroni, T.B. Rauchfuss, D.L. Gray, et al., J. Am. Chem. Soc. 134 (2012) 19260-19269;
      (b) J.I.V.D. Vlugt, T.B. Rauchfuss, C.M. Whaley, S.R. Wilson, J. Am. Chem. Soc.127 (2005) 16012-16013.

    17. [17]

      X. Yu, C.H. Tung, T.B. Rauchfuss, et al., Organometallics 36(2017) 2245-2253.  doi: 10.1021/acs.organomet.7b00297

    18. [18]

      (a) S. Munery, J.F. Capon, L. DeGioia, et al., Chem.-Eur. J. 19 (2013) 15458-15461;
      (b) W. Wang, T.B. Rauchfuss, C.E. Moore, et al., Chem.-Eur. J. 19 (2013) 15476-15479;
      (c) R. Goy, L. Bertini, C. Elleouet, et al., Dalton Trans. 44 (2015) 1690-1699.

    19. [19]

      (a) T. Liu, M.Y. Darensbourg, J. Am. Chem. Soc. 129 (2007) 7008-7009;
      (b) C.H. Hsieh, O.F. Erdem, S.D. Harman, et al., J. Am. Chem. Soc. 134 (2012) 13089-13102.

    20. [20]

      A.K. Justice, T.B. Rauchfuss, S.R. Wilson, Angew. Chem. Int. Ed. 46(2007) 6152-6154.
       

    21. [21]

      (a) J.M. Camara, T.B. Rauchfuss, Nat. Chem. 4 (2011) 26-30;
      (b) N. Wang, M. Wang, L. Sun, et al., J. Am. Chem. Soc.135 (2013) 13688-13691;
      (c) D. Zheng, M. Wang, L. Sun, et al., Chem. Commun. 50 (2014) 9255-9258.

    22. [22]

      (a) D. Chouffai, G. Zampella, J.F. Capon, et al., Organometallics 31 (2012) 1082-1091;
      (b) D. Chouffai, G. Zampella, J.F. Capon, et al., Inorg. Chem. 50 (2011) 12575-12585;
      (c) C.M. Thomas, T. Liu, M.B. Hall, M.Y. Darensbourg, Chem. Commun.13 (2008) 1563;
      (d) A.K. Justice, M.J. Nilges, T.B. Rauchfuss, et al., J. Am. Chem. Soc. 130 (2008) 5293-5301;
      (e) A.K. Justice, L.D. Gioia, T.B. Rauchfuss, et al., Inorg. Chem. 47 (2008) 7405-7414.

    23. [23]

      (a) A. Jablonskyte, J.A. Wright, C.J. Pickett, et al., Angew. Chem. Int. Ed. 53 (2014) 10143-10146;
      (b) M. Razavet, S.J. Borg, C.J. Pickett, et al., Chem. Commun. 7 (2002) 700-701;
      (c) C. Tard, X. Liu, C.J. Pickett, et al., Nature 433 (2005) 610-613;
      (d) M. Razavet, S.C. Davies, D.L. Hughes, C.J. Pickett, Chem. Commun. 9 (2001) 847-848;
      (e) J. Liu, A. Zhang, H. Song, et al., Chin. Chem. Lett. 29 (2018) 949-953.

    24. [24]

      A.K. Justice, G. Zampella, T.B. Rauchfuss, et al., Inorg. Chem. 46(2007) 1655-1664.
       

    25. [25]

      F.I. Adam, G. Hogarth, I. Richards, B.E. Sanchez, Dalton Trans. 24(2007) 2495-2498.
       

    26. [26]

      M.L. Singleton, N. Bhuvanesh, J.H. Reibenspies, M.Y. Darensbourg, Angew. Chem. 47(2008) 9492-9495.  doi: 10.1002/anie.v47:49

    27. [27]

      W. Wang, T.B. Rauchfuss, L. Bertini, G. Zampella, J. Am. Chem. Soc. 134(2012) 4525-4528.  doi: 10.1021/ja211778j

    28. [28]

      N.G. Connelly, W.E. Geiger, Chem. Rev. 96(1996) 877-910.  doi: 10.1021/cr940053x

    29. [29]

      D. Schilter, S. Hammes-Schiffer, T.B. Rauchfuss, et al., Chem. Rev. 116(2016) 8693-8749.
       

    30. [30]

      S. Lounissi, G. Zampella, J.F. Capon, et al., Chem.-Eur. J. 18(2012) 11123-11138.  doi: 10.1002/chem.201201087

    31. [31]

      T. Fujinaga, I. Sakamoto, J. Electroanal. Chem. 85(1977) 185-201.  doi: 10.1016/S0022-0728(77)80163-0

    32. [32]

      K. Abdur-Rashid, T.P. Fong, R.H. Morris, et al., J. Am. Chem. Soc. 122(2000) 9155-9171.
       

    33. [33]

      G.A.N. Felton, R.S. Glass, D.L. Lichtenberger, D.H. Evans, Inorg. Chem. 45(2006) 9181-9184.  doi: 10.1021/ic060984e

    34. [34]

      I. Kaljurand, A. Kütt, L. Sooväli, et al., J. Org. Chem. 70(2005) 1019-1028.
       

    35. [35]

      M.E. Carroll, B.E. Barton, T.B. Rauchfuss, P.J. Carroll, J. Am. Chem. Soc.134(2012) 18843-18852.  doi: 10.1021/ja309216v

    36. [36]

      R.H. Morris, Chem. Rev. 116(2016) 8588-8654.  doi: 10.1021/acs.chemrev.5b00695

    37. [37]

      E. Block, G. Oforiokai, J. Zubieta, J. Am. Chem. Soc. 111(1989) 2327-2329.  doi: 10.1021/ja00188a071

  • 加载中
    1. [1]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    2. [2]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    3. [3]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    4. [4]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    5. [5]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    8. [8]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    9. [9]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    10. [10]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    11. [11]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    12. [12]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    13. [13]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    14. [14]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    15. [15]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    16. [16]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    17. [17]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    18. [18]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    19. [19]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

Metrics
  • PDF Downloads(9)
  • Abstract views(795)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return