Synthetic[FeFe]-H2ase models bearing phosphino thioether chelating ligands
- Corresponding author: Wang Wenguang, wwg@sdu.edu.cn
Citation: Zhao Yingjie, Yu Xin, Hu Huilan, Hu Xinlong, Raje Sakthi, Angamuthu Raja, Tung Chen-Ho, Wang Wenguang. Synthetic[FeFe]-H2ase models bearing phosphino thioether chelating ligands[J]. Chinese Chemical Letters, ;2018, 29(11): 1651-1655. doi: 10.1016/j.cclet.2018.03.013
(a) Y. Li, T.B. Rauchfuss, Chem. Rev. 116 (2016) 7043-7077;
(b) L.C. Song, M.Y. Tang, F.H. Su, et al., Angew. Chem. Int. Ed. 45 (2006) 1130-1133;
(c) J.A. Kovacs, J.K. Bashkin, R.H. Holm, J. Am. Chem. Soc.107 (1985) 1784-1786;
(d) H. Abul-Futouh, L.R. Almazahreh, M.K. Harb, et al., Inorg. Chem. 56 (2017) 10437-10451.
(a) R.P. Venkateswara, R.H. Holm, Chem. Rev. 104 (2004) 527;
(b) L.C. Song, H. Tan, A.G. Zhu, Y.Y. Hu, H. Chen, Organometallics 34 (2015) 1730-1741;
(c) L.C. Song, H.T. Fan, Q.M. Hu, J. Am. Chem. Soc. 124 (2002) 4566-4567;
(d) D. Chong, I.P. Georgakaki, M.Y. Darensbourg, et al., Dalton Trans. (2003) 4158-4163.
(a) L.C. Song, Acc. Chem. Res. 38 (2005) 21-28;
(b) L.C. Song, Y.L. Li, Q.M. Hu, et al., Inorg. Chem. 49 (2010) 10174-10182;
(c) L.C. Song, L.D. Zhang, B.B. Liu, et al., Organometallics 36 (2017) 1419-1429;
(d) S.J. George, Z. Cui, M. Razavet, C.J. Pickett, Chem.-Eur. J. 8 (2002) 4037-4046.
(a) K. Fauvel, R. Mathieu, R. Poilblanc, Inorg. Chem. 15 (1976) 976-978;
(b) U.E. Apfel, F.Y. Pétillon, W. Weigand, et al., [FeFe] Hydrogenase Models: An Overview, in: W. Weigand, P. Schollhammer (Eds.), Bioinspired Catalysis: Metal-Sulfur Complexes, Wiley-VCH Verlag GmbH & Co KGaA, 2014, pp. 79-104;
(c) S. Ogo, Y. Mori, M. Asano, et al., Angew. Chem. Int. Ed. 56 (2017) 9723-9726;
(d) Y. Shomura, M. Taketa, Y. Higuchi, et al., Science 357 (2017) 928-932;
(e) A. Onoda, Y. Kihara, K. Fukumoto, Y. Sano, T. Hayashi, ACS Catal. 4 (2014) 2645-2648.
E.M. Shepard, E.S. Boyd, J.B. Broderick, J.W. Peters, Curr. Opin. Chem. Biol. 15(2011) 319-327.
J.C. Fontecillacamps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107(2007) 4273-4303.
doi: 10.1021/cr050195z
A. Silakov, B. Wenk, E. Reijerse, W. Lubitz, Phys. Chem. Chem. Phys. 11(2009) 6592-6599.
doi: 10.1039/b905841a
(a) J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 282 (1998) 1853-1858;
(b) Y. Nicolet, C. Piras, J.C. Fontecilla-Camps, et al., Structure 7 (1999) 13-23.
(a) C. Tard, C.J. Pickett, Chem. Rev. 109 (2009) 2245-2274;
(b) L.Z. Wu, B. Chen, Z.J. Li, C.H. Tung, Acc. Chem. Res. 47 (2014) 2177-2185;
(c) S.J. Borg, T. Behrsing, C.J. Pickett, et al., J. Am. Chem. Soc. 126 (2004) 16988-16999;
(d) F. Wang, W.G. Wang, L.Z. Wu, et al., ACS Catal. 2 (2012) 407-416;
(e) Y. Na, M. Wang, L. Sun, et al., Inorg. Chem. 47 (2008) 2805-2810;
(f) L.J. Antila, P. Ghamgosar, L. Hammarström, et al., ACS Energy Lett. 1 (2016) 1106-1111;
(g) A.M. Brown, L.J. Antila, L. Hammarström, et al., J. Am. Chem. Soc.138 (2016) 8060-8063.
(a) L.C. Song, Z.Y. Yang, Q.M. Hu, et al., Organometallics 24 (2005) 6126-6135;
(b) L.C. Song, Q.L. Li, H.B. Song, et al., Dalton Trans. 42 (2013) 1612-1626;
(c) W.G. Wang, H.Y. Wang, L.Z. Wu, et al., Dalton Trans. 15 (2009) 2712-2720;
(d) P. Li, M. Wang, L. Sun, et al., Eur. J. Inorg. Chem. 2007 (2007) 3718-3727;
(e) C.M. Thomas, O. Rüdiger, M.Y. Darensbourg, et al., Organometallics 26 (2007) 3976-3984;
(f) S. Ezzaher, J.F. Capon, J. Talarmin, Inorg. Chem. 8 (2009) 2-4;
(g) L.C. Song, F.X. Luo, B.B. Liu, et al., Organometallics 35 (2016) 1399-1408;
(h) M. Cheng, M. Wang, D. Zheng, L. Sun, Dalton Trans. 45 (2016) 17687-17696;
(i) D. Zheng, N. Wang, L. Sun, et al., J. Am. Chem. Soc. 136 (2014) 16817-16823.
(a) M. Razavet, X. Liu, C.J. Pickett, Dalton Trans. 236 (2003) 586-595;
(b) U.P. Apfel, Y. Halpin, H. Görls, J.G. Vos, W. Weigand, Eur. J. Inorg. Chem. 2011 (2011) 581-588.
(a) J.W. Tye, J. Lee, M.Y. Darensbourg, Inorg. Chem. 44 (2005) 5550-5552;
(b) D. Morvan, J.F. Capon, F. Gloaguen, et al., Organometallics 26 (2017) 2042-2052;
(c) J.F. Capon, S.E. Hassnaoui, F. Gloaguen, et al., Organometallics 24 (2005) 2020-2022.
(a) X. Zhao, I.P. Georgakaki, M.Y. Darensbourg, et al., J. Am. Chem. Soc. 123 (2001) 9710-9711;
(b) J.A. Wright, C.J. Pickett, Chem. Commun. 45 (2009) 5719-5721;
(c) A. Jablonskyte, J.A. Wright, C.J. Pickett, Dalton Trans. 39 (2010) 3026-3034.
(a) W. Wang, M.J. Nilges, T.B. Rauchfuss, M. Stein, J. Am. Chem. Soc.135 (2013) 3633-3639;
(b) A. Jablonskyte, J.A. Wright, C.J. Pickett, et al., J. Am. Chem. Soc. 133 (2011) 18606.
(a) S. Ezzaher, J.F. Capon, N. Kervarec, Inorg. Chem. 46 (2007) 3426-3428;
(b) B.E. Barton, T.B. Rauchfuss, S.R. Wilson, et al., DaltonTrans. 39 (2010) 3011-3019.
(a) R. Zaffaroni, T.B. Rauchfuss, D.L. Gray, et al., J. Am. Chem. Soc. 134 (2012) 19260-19269;
(b) J.I.V.D. Vlugt, T.B. Rauchfuss, C.M. Whaley, S.R. Wilson, J. Am. Chem. Soc.127 (2005) 16012-16013.
X. Yu, C.H. Tung, T.B. Rauchfuss, et al., Organometallics 36(2017) 2245-2253.
doi: 10.1021/acs.organomet.7b00297
(a) S. Munery, J.F. Capon, L. DeGioia, et al., Chem.-Eur. J. 19 (2013) 15458-15461;
(b) W. Wang, T.B. Rauchfuss, C.E. Moore, et al., Chem.-Eur. J. 19 (2013) 15476-15479;
(c) R. Goy, L. Bertini, C. Elleouet, et al., Dalton Trans. 44 (2015) 1690-1699.
(a) T. Liu, M.Y. Darensbourg, J. Am. Chem. Soc. 129 (2007) 7008-7009;
(b) C.H. Hsieh, O.F. Erdem, S.D. Harman, et al., J. Am. Chem. Soc. 134 (2012) 13089-13102.
A.K. Justice, T.B. Rauchfuss, S.R. Wilson, Angew. Chem. Int. Ed. 46(2007) 6152-6154.
(a) J.M. Camara, T.B. Rauchfuss, Nat. Chem. 4 (2011) 26-30;
(b) N. Wang, M. Wang, L. Sun, et al., J. Am. Chem. Soc.135 (2013) 13688-13691;
(c) D. Zheng, M. Wang, L. Sun, et al., Chem. Commun. 50 (2014) 9255-9258.
(a) D. Chouffai, G. Zampella, J.F. Capon, et al., Organometallics 31 (2012) 1082-1091;
(b) D. Chouffai, G. Zampella, J.F. Capon, et al., Inorg. Chem. 50 (2011) 12575-12585;
(c) C.M. Thomas, T. Liu, M.B. Hall, M.Y. Darensbourg, Chem. Commun.13 (2008) 1563;
(d) A.K. Justice, M.J. Nilges, T.B. Rauchfuss, et al., J. Am. Chem. Soc. 130 (2008) 5293-5301;
(e) A.K. Justice, L.D. Gioia, T.B. Rauchfuss, et al., Inorg. Chem. 47 (2008) 7405-7414.
(a) A. Jablonskyte, J.A. Wright, C.J. Pickett, et al., Angew. Chem. Int. Ed. 53 (2014) 10143-10146;
(b) M. Razavet, S.J. Borg, C.J. Pickett, et al., Chem. Commun. 7 (2002) 700-701;
(c) C. Tard, X. Liu, C.J. Pickett, et al., Nature 433 (2005) 610-613;
(d) M. Razavet, S.C. Davies, D.L. Hughes, C.J. Pickett, Chem. Commun. 9 (2001) 847-848;
(e) J. Liu, A. Zhang, H. Song, et al., Chin. Chem. Lett. 29 (2018) 949-953.
A.K. Justice, G. Zampella, T.B. Rauchfuss, et al., Inorg. Chem. 46(2007) 1655-1664.
F.I. Adam, G. Hogarth, I. Richards, B.E. Sanchez, Dalton Trans. 24(2007) 2495-2498.
M.L. Singleton, N. Bhuvanesh, J.H. Reibenspies, M.Y. Darensbourg, Angew. Chem. 47(2008) 9492-9495.
doi: 10.1002/anie.v47:49
W. Wang, T.B. Rauchfuss, L. Bertini, G. Zampella, J. Am. Chem. Soc. 134(2012) 4525-4528.
doi: 10.1021/ja211778j
N.G. Connelly, W.E. Geiger, Chem. Rev. 96(1996) 877-910.
doi: 10.1021/cr940053x
D. Schilter, S. Hammes-Schiffer, T.B. Rauchfuss, et al., Chem. Rev. 116(2016) 8693-8749.
S. Lounissi, G. Zampella, J.F. Capon, et al., Chem.-Eur. J. 18(2012) 11123-11138.
doi: 10.1002/chem.201201087
T. Fujinaga, I. Sakamoto, J. Electroanal. Chem. 85(1977) 185-201.
doi: 10.1016/S0022-0728(77)80163-0
K. Abdur-Rashid, T.P. Fong, R.H. Morris, et al., J. Am. Chem. Soc. 122(2000) 9155-9171.
G.A.N. Felton, R.S. Glass, D.L. Lichtenberger, D.H. Evans, Inorg. Chem. 45(2006) 9181-9184.
doi: 10.1021/ic060984e
I. Kaljurand, A. Kütt, L. Sooväli, et al., J. Org. Chem. 70(2005) 1019-1028.
M.E. Carroll, B.E. Barton, T.B. Rauchfuss, P.J. Carroll, J. Am. Chem. Soc.134(2012) 18843-18852.
doi: 10.1021/ja309216v
R.H. Morris, Chem. Rev. 116(2016) 8588-8654.
doi: 10.1021/acs.chemrev.5b00695
E. Block, G. Oforiokai, J. Zubieta, J. Am. Chem. Soc. 111(1989) 2327-2329.
doi: 10.1021/ja00188a071
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
Yanqiong Wang , Yaqi Hou , Fengwei Huo , Xu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243