Flexible supercapacitors based on carbon nanotubes
- Corresponding author: Liu Lili, lililiuhappy@163.com
Citation: Liu Lili, Niu Zhiqiang, Chen Jun. Flexible supercapacitors based on carbon nanotubes[J]. Chinese Chemical Letters, ;2018, 29(4): 571-581. doi: 10.1016/j.cclet.2018.01.013
S.R. Forrest, Nature 428(2004) 911-918.
doi: 10.1038/nature02498
D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, Science 311(2006) 208-212.
doi: 10.1126/science.1121401
J.A. Rogers, T. Someya, Y.G. Huang, Science 327(2010) 1603-1607.
doi: 10.1126/science.1182383
M. Winter, R.J. Brodd, Chem. Rev. 104(2004) 4245-4269.
doi: 10.1021/cr020730k
P. Simon, Y. Gogotsi, Nat. Mater. 7(2008) 845-854.
doi: 10.1038/nmat2297
J. Chen, F.Y. Cheng, Acc. Chem. Res. 42(2009) 713-723.
doi: 10.1021/ar800229g
L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38(2009) 2520-2531.
doi: 10.1039/b813846j
D. Pech, M. Brunet, H. Durou, et al., Nat. Nanotechnol. 5(2010) 651-654.
doi: 10.1038/nnano.2010.162
Y.W. Zhu, S. Murali, M.D. Stoller, et al., Science 332(2011) 1537-1541.
doi: 10.1126/science.1200770
X.Y. Lang, A. Hirata, T. Fujita, M.W. Chen, Nat. Nanotechnol. 6(2011) 232-236.
doi: 10.1038/nnano.2011.13
F.Y. Cheng, J. Chen, Chem. Soc. Rev. 41(2012) 2172-2192.
doi: 10.1039/c1cs15228a
X. Peng, L.L. Peng, C.Z. Wu, Y. Xie, Chem. Soc. Rev. 43(2014) 3303-3323.
doi: 10.1039/c3cs60407a
C. Zhong, Y.D. Deng, W.B. Hu, et al., Chem. Soc. Rev. 44(2015) 7484-7539.
doi: 10.1039/C5CS00303B
M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10(2015) 313-318.
doi: 10.1038/nnano.2015.40
M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3(2010) 1294-1301.
doi: 10.1039/c0ee00074d
C. Zhang, W. Lv, Y. Tao, Q.H. Yang, Energy Environ. Sci. 8(2015) 1390-1403.
doi: 10.1039/C5EE00389J
Y. Zhang, H. Feng, X.B. Wu, et al., Int. J. Hydrogen Energy 34(2009) 4889-4899.
doi: 10.1016/j.ijhydene.2009.04.005
A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4(2005) 366-377.
doi: 10.1038/nmat1368
A. Ghosh, Y.H. Lee, ChemSusChem 5(2012) 480-499.
doi: 10.1002/cssc.v5.3
F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26(2014) 2219-2251.
doi: 10.1002/adma.v26.14
M. Sevilla, R. Mokaya, Energy Environ. Sci. 7(2014) 1250-1280.
doi: 10.1039/C3EE43525C
G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41(2012) 797-828.
doi: 10.1039/C1CS15060J
X.Y. Zheng, W. Lv, Y. Tao, et al., Chem. Mater. 26(2014) 6896-6903.
doi: 10.1021/cm503845q
Z.J. Li, W. Lv, C. Zhang, et al., Carbon 92(2015) 11-14.
doi: 10.1016/j.carbon.2015.02.054
Z. Chen, V. Augustyn, X.L. Jia, et al., ACS Nano 6(2012) 4319-4327.
doi: 10.1021/nn300920e
M.F. Yu, O. Lourie, M.J. Dyer, et al., Science 287(2000) 637-640.
doi: 10.1126/science.287.5453.637
S. Hong, S. Myung, Nat. Nanotechnol. 2(2007) 207-208.
doi: 10.1038/nnano.2007.89
P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2(2007) 605-615.
doi: 10.1038/nnano.2007.300
M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Phys. Rev. Lett. 84(2000) 5552-5555.
doi: 10.1103/PhysRevLett.84.5552
X.J. Zhou, J.Y. Park, S.M. Huang, J. Liu, P.L. McEuen, Phys. Rev. Lett. 95(2005) 146805.
doi: 10.1103/PhysRevLett.95.146805
E. Pop, D. Mann, Q. Wang, K.E. Goodson, H.J. Dai, Nano Lett. 6(2006) 96-100.
doi: 10.1021/nl052145f
H. Huang, C.H. Liu, Y. Wu, S.S. Fan, Adv. Mater. 17(2005) 1652-1656.
doi: 10.1002/(ISSN)1521-4095
A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Carbon 39(2001) 507-514.
doi: 10.1016/S0008-6223(00)00155-X
K. Kordas, G. Toth, P. Moilanen, et al., Appl. Phys. Lett. 90(2007) 123105.
doi: 10.1063/1.2714281
L.Q. Liu, W.J. Ma, Z. Zhang, Small 7(2011) 1504-1520.
doi: 10.1002/smll.v7.11
H.Y. Chen, S. Zeng, M.H. Chen, Y.Y. Zhang, Q.W. Li, Carbon 92(2015) 271-296.
doi: 10.1016/j.carbon.2015.04.010
Z.Q. Niu, L.L. Liu, L. Zhang, et al., Adv. Energy Mater. 5(2015) 1500677.
doi: 10.1002/aenm.201500677
S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. del Monte, Chem. Soc. Rev. 42(2013) 794-830.
doi: 10.1039/C2CS35353A
S.H. Lee, D.H. Lee, W.J. Lee, S.O. Kim, Adv. Funct. Mater. 21(2011) 1338-1354.
doi: 10.1002/adfm.v21.8
Y.H. Wang, J.R. Zeng, J. Li, et al., J. Mater. Chem. A 3(2015) 16382-16392.
doi: 10.1039/C5TA03467A
Z.Y. Cao, B.Q. Wei, Energy Environ. Sci. 6(2013) 3183-3201.
doi: 10.1039/C3EE42261E
T.C. Zhang, C.H.J. Kim, Y.W. Cheng, et al., Nanoscale 7(2015) 3285-3291.
doi: 10.1039/C4NR06812B
S.W. Pan, H.J. Lin, J. Deng, et al., Adv. Energy Mater. 5(2015) 1401438.
doi: 10.1002/aenm.201401438
Q.Y. Niu, K.Z. Gao, Z.Q. Shao, Nanoscale 6(2014) 4083-4088.
doi: 10.1039/c3nr05929d
X.L. Chen, H.J. Lin, J. Deng, et al., Adv. Mater. 26(2014) 8126-8132.
doi: 10.1002/adma.201403243
K. Jost, D. Stenger, C.R. Perez, et al., Energy Environ. Sci. 6(2013) 2698-2705.
doi: 10.1039/c3ee40515j
Y. Zheng, Y.B. Yang, S.S. Chen, Q. Yuan, CrystEngComm 18(2016) 4218-4235.
doi: 10.1039/C5CE02510A
X. Cai, M. Peng, X. Yu, Y.P. Fu, D.C. Zou, J. Mater. Chem. C 2(2014) 1184-1200.
L.L. Liu, Z.Q. Niu, J. Chen, Chem. Soc. Rev. 45(2016) 4340-4363.
doi: 10.1039/C6CS00041J
D.S. Yu, Q.H. Qian, L. Wei, et al., Chem. Soc. Rev. 44(2015) 647-662.
doi: 10.1039/C4CS00286E
S.R. Shin, C.K. Lee, I. So, et al., Adv. Mater. 20(2008) 466-470.
doi: 10.1002/(ISSN)1521-4095
L. Kou, T.Q. Huang, B.N. Zheng, et al., Nat. Commun. 5(2014) 3754.
Y.W. Ma, P. Li, J.W. Sedloff, et al., ACS Nano 9(2015) 1352-1359.
doi: 10.1021/nn505412v
Q.H. Meng, K. Wang, W. Guo, et al., Small 10(2014) 3187-3193.
doi: 10.1002/smll.v10.15
Q.H. Meng, H.P. Wu, Y.N. Meng, et al., Adv. Mater. 26(2014) 4100-4106.
doi: 10.1002/adma.v26.24
N. Zhang, W.Y. Zhou, Q. Zhang, et al., Nanoscale 7(2015) 12492-12497.
doi: 10.1039/C5NR03027G
F.M. Guo, R.Q. Xu, X. Cui, et al., J. Mater. Chem. A 4(2016) 9311-9318.
doi: 10.1039/C6TA02437H
R.Q. Xu, F.M. Guo, X. Cui, et al., J. Mater. Chem. A 3(2015) 22353-22360.
doi: 10.1039/C5TA06165B
Y. Zhou, X.Y. Hu, Y.Y. Shang, et al., RSC Adv. 6(2016) 62062-62070.
doi: 10.1039/C6RA07297F
R.Q. Xu, J.Q. Wei, F.M. Guo, et al., RSC Adv. 5(2015) 22015-22021.
doi: 10.1039/C5RA01917F
W.J. Ma, L.Q. Liu, R. Yang, et al., Adv. Mater. 21(2009) 603-608.
doi: 10.1002/adma.200801335
Y. Zhang, W.Y. Bai, X.L. Cheng, et al., Angew. Chem. Int. Ed. 53(2014) 14564-14568.
doi: 10.1002/anie.201409366
T. Chen, R. Hao, H.S. Peng, L.M. Dai, Angew. Chem. Int. Ed. 54(2015) 618-622.
G.Z. Sun, X. Zhang, R.Z. Lin, et al., Angew. Chem. Int. Ed. 54(2015) 4651-4656.
doi: 10.1002/anie.201411533
K. Wang, Q.H. Meng, Y.J. Zhang, Z.X. Wei, M.H. Miao, Adv. Mater. 25(2013) 1494-1498.
doi: 10.1002/adma.v25.10
J. Ren, L. Li, C. Chen, et al., Adv. Mater. 25(2013) 1155-1159.
doi: 10.1002/adma.201203445
P. Xu, T.L. Gu, Z.Y. Cao, et al., Adv. Energy Mater. 4(2014) 1300759.
doi: 10.1002/aenm.201300759
X.L. Chen, L.B. Qiu, J. Ren, et al., Adv. Mater. 25(2013) 6436-6441.
doi: 10.1002/adma.v25.44
C. Choi, J.A. Lee, A.Y. Choi, et al., Adv. Mater. 26(2014) 2059-2065.
doi: 10.1002/adma.201304736
J. Ren, W.Y. Bai, G.Z. Guan, Y. Zhang, H.S. Peng, Adv. Mater. 25(2013) 5965-5970.
doi: 10.1002/adma.201302498
Z.B. Cai, L. Li, J. Ren, et al., J. Mater. Chem. A 1(2013) 258-261.
doi: 10.1039/C2TA00274D
J. Xu, J.N. Ding, X.S. Zhou, et al., J. Power Sources 340(2017) 302-308.
doi: 10.1016/j.jpowsour.2016.11.085
F.H. Su, M.H. Miao, H.T. Niu, Z.X. Wei, ACS Appl. Mater. Interfaces 6(2014) 2553-2560.
doi: 10.1021/am404967x
Q.C. Zhang, X.N. Wang, Z.H. Pan, et al., Nano Lett. 17(2017) 2719-2726.
doi: 10.1021/acs.nanolett.7b00854
X.B. Zhang, K.L. Jiang, C. Teng, et al., Adv. Mater. 18(2006) 1505-1510.
doi: 10.1002/(ISSN)1521-4095
K. Liu, Y.H. Sun, R.F. Zhou, et al., Nanotechnology 21(2010) 045708.
doi: 10.1088/0957-4484/21/4/045708
M.Y. Li, M. Zu, J.S. Yu, H.F. Cheng, Q.W. Li, Small 13(2017) 1602994.
doi: 10.1002/smll.v13.12
K.L. Jiang, Q.Q. Li, S.S. Fan, Nature 419(2002) 801-801.
doi: 10.1038/419801a
K.L. Jiang, J.P. Wang, Q.Q. Li, et al., Adv. Mater. 23(2011) 1154-1161.
doi: 10.1002/adma.201003989
H. Sun, X. You, J. Deng, et al., Adv. Mater. 26(2014) 2868-2873.
doi: 10.1002/adma.v26.18
J.A. Lee, M.K. Shin, S.H. Kim, et al., Nat. Commun. 4(2013) 1970.
J. Deng, Y. Zhang, Y. Zhao, et al., Angew. Chem. Int. Ed. 54(2015) 15419-15423.
doi: 10.1002/anie.201508293
Z.B. Yang, J. Deng, X.L. Chen, J. Ren, H.S. Peng, Angew. Chem. Int. Ed. 52(2013) 13453-13457.
doi: 10.1002/anie.201307619
C. Choi, S.H. Kim, H.J. Sim, et al., Sci. Rep. 5(2015) 9387.
doi: 10.1038/srep09387
F.H. Su, X.M. Lyu, C.S. Liu, M.H. Miao, Electrochim. Acta 215(2016) 535-542.
doi: 10.1016/j.electacta.2016.08.140
V.T. Le, H. Kim, A. Ghosh, et al., ACS Nano 7(2013) 5940-5947.
doi: 10.1021/nn4016345
D.H. Zhang, M.H. Miao, H.T. Niu, Z.X. Wei, ACS Nano 8(2014) 4571-4579.
doi: 10.1021/nn5001386
N.S. Liu, W.Z. Ma, J.Y. Tao, et al., Adv. Mater. 25(2013) 4925-4931.
doi: 10.1002/adma.201301311
Z. Gui, H.L. Zhu, E. Gillette, et al., ACS Nano 7(2013) 6037-6046.
doi: 10.1021/nn401818t
M.J. Shi, C. Yang, X.F. Song, et al., Chem. Eng. J. 322(2017) 538-545.
doi: 10.1016/j.cej.2017.04.065
K.F. Fu, Y.P. Sun, J. Nanosci. Nanotechnol. 3(2003) 351-364.
doi: 10.1166/jnn.2003.225
J.H. Rouse, P.T. Lillehei, Nano Lett. 3(2003) 59-62.
doi: 10.1021/nl025780j
M.N. Zhang, L. Su, L.Q. Mao, Carbon 44(2006) 276-283.
doi: 10.1016/j.carbon.2005.07.021
P. Chen, H.T. Chen, J. Qiu, C.W. Zhou, Nano Res. 3(2010) 594-603.
doi: 10.1007/s12274-010-0020-x
S.L. Wang, N.S. Liu, J.Y. Tao, et al., J. Mater. Chem. A 3(2015) 2407-2413.
doi: 10.1039/C4TA05625F
S.K. Ujjain, P. Ahuja, R. Bhatia, P. Attri, Mater. Res. Bull. 83(2016) 167-171.
doi: 10.1016/j.materresbull.2016.06.006
A.K. Sundramoorthy, Y.C. Wang, S. Gunasekaran, Nano Res. 8(2015) 3430-3445.
doi: 10.1007/s12274-015-0880-1
L.B. Hu, J.W. Choi, Y. Yang, et al., Proc. Natl. Acad. Sci. U. S. A.106(2009) 21490-21494.
doi: 10.1073/pnas.0908858106
X.Y. Wang, Q.Q. Lu, C. Chen, et al., ACS Appl. Mater. Interfaces 9(2017) 28612-28619.
doi: 10.1021/acsami.7b08833
Y.J. Kang, B. Kim, H. Chung, W. Kim, Synth. Met. 160(2010) 2510-2514.
doi: 10.1016/j.synthmet.2010.09.036
Y.J. Kang, H. Chung, C.H. Han, W. Kim, Nanotechnology 23(2012) 065401.
doi: 10.1088/0957-4484/23/6/065401
Z.S. Zhang, W. Wang, C. Li, et al., J. Power Sources 248(2014) 1248-1255.
doi: 10.1016/j.jpowsour.2013.10.061
L.B. Hu, M. Pasta, F. La Mantia, et al., Nano Lett. 10(2010) 708-714.
doi: 10.1021/nl903949m
K. Wang, P. Zhao, X.M. Zhou, et al., J. Mater. Chem. 21(2011) 16373-16378.
doi: 10.1039/c1jm13722k
W.Y. Ko, Y.F. Chen, K.M. Lu, K.J. Lin, Sci. Rep. 6(2016) 18887.
doi: 10.1038/srep18887
C.H. Liu, Z.S. Cai, Y.P. Zhao, H. Zhao, F.Y. Ge, Cellulose 23(2016) 637-648.
doi: 10.1007/s10570-015-0795-8
S. Hu, R. Rajamani, X. Yu, Appl. Phys. Lett. 100(2012) 104103.
doi: 10.1063/1.3691948
Z.Y. Zhang, F. Xiao, L.H. Qian, et al., Adv. Energy Mater. 4(2014) 1400064.
doi: 10.1002/aenm.201400064
M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9(2009) 1872-1876.
doi: 10.1021/nl8038579
Q. Liu, M.H. Nayfeh, S.T. Yau, J. Power Sources 195(2010) 7480-7483.
doi: 10.1016/j.jpowsour.2010.06.002
X.D. Zhang, Z.Y. Lin, B. Chen, et al., J. Mater. Chem. A 1(2013) 5835-5839.
doi: 10.1039/c3ta10827a
L.B. Hu, W. Chen, X. Xie, et al., ACS Nano 5(2011) 8904-8913.
doi: 10.1021/nn203085j
W. Chen, R.B. Rakhi, L.B. Hu, et al., Nano Lett. 11(2011) 5165-5172.
doi: 10.1021/nl2023433
X. Xie, M. Ye, L.B. Hu, et al., Energy Environ. Sci. 5(2012) 5265-5270.
doi: 10.1039/C1EE02122B
J.H. Zhang, Y.H. Wang, J.B. Zang, et al., Carbon 50(2012) 5196-5202.
doi: 10.1016/j.carbon.2012.07.002
J.H. Zhang, J.B. Zang, J.J. Huang, Y.H. Wang, G.X. Xin, Mater. Lett. 126(2014) 24-27.
doi: 10.1016/j.matlet.2014.04.039
Z.H. Ma, X.W. Zhao, C.H. Gong, et al., J. Mater. Chem. A 3(2015) 13445-13452.
doi: 10.1039/C5TA01831E
J.L. Liu, L.L. Zhang, H.B. Wu, et al., Energy Environ. Sci. 7(2014) 3709-3719.
doi: 10.1039/C4EE01475H
Y.C. Qiu, G.Z. Li, Y. Hou, et al., Chem. Mater. 27(2015) 1194-1200.
doi: 10.1021/cm503784x
T. Wang, D.F. Song, H. Zhao, et al., J. Power Sources 274(2015) 709-717.
doi: 10.1016/j.jpowsour.2014.10.102
J. Cherusseri, K.K. Kar, J. Mater. Chem. A 4(2016) 9910-9922.
doi: 10.1039/C6TA02690G
J. Cherusseri, R. Sharma, K.K. Kar, Carbon 105(2016) 113-125.
doi: 10.1016/j.carbon.2016.04.019
C.Y. Xiong, T.H. Li, T.K. Zhao, et al., Compos. Part. B:Eng. 116(2017) 7-15.
doi: 10.1016/j.compositesb.2017.02.028
J. Zhang, X.B. Yi, X.C. Wang, et al., J. Mater. Sci.-Mater. Electron. 26(2015) 7901-7908.
doi: 10.1007/s10854-015-3442-0
S.Y. Wang, R.A.W. Dryfe, J. Mater. Chem. A 1(2013) 5279-5283.
doi: 10.1039/c3ta10436b
Y. Yesi, I. Shown, A. Ganguly, et al., ChemSusChem 9(2016) 370-378.
doi: 10.1002/cssc.v9.4
Z. Li, Y.F. Li, L. Wang, et al., Electrochim. Acta 235(2017) 561-569.
doi: 10.1016/j.electacta.2017.03.147
P. Lv, P. Zhang, Y.Y. Feng, Y. Li, W. Feng, Electrochim. Acta 78(2012) 515-523.
doi: 10.1016/j.electacta.2012.06.085
J.H. Kim, K.W. Nam, S.B. Ma, K.B. Kim, Carbon 44(2006) 1963-1968.
doi: 10.1016/j.carbon.2006.02.002
Z. Chen, Y.L. Yang, Z.Y. Wu, et al., J. Phys. Chem. B 109(2005) 5473-5477.
doi: 10.1021/jp045796t
C.S. Du, N. Pan, J. Power Sources 160(2006) 1487-1494.
doi: 10.1016/j.jpowsour.2006.02.092
S.H. Li, D.K. Huang, B.Y. Zhang, et al., Adv. Energy Mater. 4(2014) 1301655.
doi: 10.1002/aenm.201301655
S.L. Chou, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, Electrochem. Commun. 10(2008) 1724-1727.
doi: 10.1016/j.elecom.2008.08.051
P.C. Chen, G.Z. Shen, Y. Shi, H.T. Chen, C.W. Zhou, ACS Nano 4(2010) 4403-4411.
doi: 10.1021/nn100856y
S.D. Perera, B. Patel, N. Nijem, et al., Adv. Energy Mater. 1(2011) 936-945.
doi: 10.1002/aenm.v1.5
X.J. Lu, H. Dou, B. Gao, et al., Electrochim. Acta 56(2011) 5115-5121.
doi: 10.1016/j.electacta.2011.03.066
Y.J. Kang, S.J. Chun, S.S. Lee, et al., ACS Nano 6(2012) 6400-6406.
doi: 10.1021/nn301971r
Y.W. Cheng, S.T. Lu, H.B. Zhang, C.V. Varanasi, J. Liu, Nano Lett. 12(2012) 4206-4211.
doi: 10.1021/nl301804c
Y.W. Cheng, H.B. Zhang, S.T. Lu, C.V. Varanasiad, J. Liu, Nanoscale 5(2013) 1067-1073.
doi: 10.1039/C2NR33136E
H.C. Gao, F. Xiao, C.B. Ching, H.W. Duan, ACS Appl. Mater. Interfaces 4(2012) 7020-7026.
doi: 10.1021/am302280b
C. Zhang, W.W. Tjiu, T.X. Liu, Polym. Chem. 4(2013) 5785-5792.
doi: 10.1039/c3py00699a
Y. Gao, Y.S. Zhou, M. Qian, et al., RSC Adv. 3(2013) 20613-20618.
doi: 10.1039/c3ra43039a
W.C. Jiang, K.X. Zhang, L. Wei, et al., Nanoscale 5(2013) 11108-11117.
doi: 10.1039/c3nr03010e
X. Xiao, X. Peng, H.Y. Jin, et al., Adv. Mater. 25(2013) 5091-5097.
doi: 10.1002/adma.201301465
J.W. Zhao, J.L. Chen, S.M. Xu, et al., Adv. Funct. Mater. 24(2014) 2938-2946.
doi: 10.1002/adfm.v24.20
L.H. Du, P.H. Yang, X. Yu, et al., J. Mater. Chem. A 2(2014) 17561-17567.
doi: 10.1039/C4TA04431B
P. Sun, Z.W. Deng, P.H. Yang, et al., J. Mater. Chem. A 3(2015) 12076-12080.
doi: 10.1039/C5TA02316E
S.W. Lee, B.M. Gallant, Y. Lee, et al., Energy Environ. Sci. 5(2012) 5437-5444.
doi: 10.1039/C1EE02409D
Y.L. Chen, L.H. Du, P.H. Yang, et al., J. Power Sources 287(2015) 68-74.
doi: 10.1016/j.jpowsour.2015.04.026
S.H. Yue, H. Tong, L. Lu, et al., J. Mater. Chem. A 5(2017) 689-698.
doi: 10.1039/C6TA09128H
S.Z. Wang, J.Y. Zhu, Y.L. Shao, et al., Chem. Eur. J. 23(2017) 3438-3446.
doi: 10.1002/chem.201605465
K.R. Li, Y.L. Shao, S.Y. Liu, et al., Small 13(2017) 1700380.
doi: 10.1002/smll.v13.19
L.Q. Deng, Y.Z. Gu, Y.H. Gao, Z.Y. Ma, G. Fan, J. Colloid Interface Sci. 494(2017) 355-362.
doi: 10.1016/j.jcis.2017.01.062
H.U. Lee, J.L. Yin, S.W. Park, J.Y. Park, Synth. Met. 228(2017) 84-90.
doi: 10.1016/j.synthmet.2017.03.016
L. Cooper, H. Amano, M. Hiraide, et al., Appl. Phys. Lett. 95(2009) 233104.
doi: 10.1063/1.3271768
D. Antiohos, G. Folkes, P. Sherrell, et al., J. Mater. Chem. 21(2011) 15987-15994.
doi: 10.1039/c1jm12986d
C.Z. Meng, C.H. Liu, S.S. Fan, Electrochem. Commun. 11(2009) 186-189.
doi: 10.1016/j.elecom.2008.11.005
M.H. Yu, Y.F. Zhang, Y.X. Zeng, et al., Adv. Mater. 26(2014) 4724-4729.
doi: 10.1002/adma.v26.27
D. Liu, P.C. Du, W.L. Wei, et al., Electrochim. Acta 233(2017) 201-209.
doi: 10.1016/j.electacta.2017.03.040
Z.D. Huang, B. Zhang, S.W. Oh, et al., J. Mater. Chem. 22(2012) 3591-3599.
doi: 10.1039/c2jm15048d
A. Izadi-Najafabadi, T. Yamada, D.N. Futaba, et al., ACS Nano 5(2011) 811-819.
doi: 10.1021/nn1017457
C.Z. Meng, C.H. Liu, L.Z. Chen, C.H. Hu, S.S. Fan, Nano Lett. 10(2010) 4025-4031.
doi: 10.1021/nl1019672
Z.Q. Niu, W.Y. Zhou, J. Chen, et al., Energy Environ. Sci. 4(2011) 1440-1446.
doi: 10.1039/c0ee00261e
Z.Q. Niu, P.S. Luan, Q. Shao, et al., Energy Environ. Sci. 5(2012) 8726-8733.
doi: 10.1039/c2ee22042c
S.Q. He, J.Q. Wei, F.M. Guo, et al., J. Mater. Chem. A 2(2014) 5898-5902.
doi: 10.1039/C4TA00089G
Y.J. Zheng, Z.Q. Lin, W.J. Chen, et al., J. Mater. Chem. A 5(2017) 5886-5894.
doi: 10.1039/C7TA00491E
J.M. Feng, R. Wang, Y.L. Li, et al., Carbon 48(2010) 3817-3824.
doi: 10.1016/j.carbon.2010.06.046
S. Boukhalfa, K. Evanoff, G. Yushin, Energy Environ. Sci. 5(2012) 6872-6879.
doi: 10.1039/c2ee21110f
Z.Q. Niu, W.Y. Zhou, J. Chen, et al., Small 9(2013) 518-524.
doi: 10.1002/smll.v9.4
P. Kanninen, N.D. Luong, L.H. Sinh, et al., Nanotechnology 27(2016) 235403.
doi: 10.1088/0957-4484/27/23/235403
E.P. Gilshteyn, T. Kallio, P. Kanninen, et al., RSC Adv. 6(2016) 93915-93921.
doi: 10.1039/C6RA20319A
J.T. Di, D.M. Hu, H.Y. Chen, et al., ACS Nano 6(2012) 5457-5464.
doi: 10.1021/nn301321j
C. Feng, K. Liu, J.S. Wu, L. Liu, et al., Adv. Funct. Mater. 20(2010) 885-891.
doi: 10.1002/adfm.200901960
H.J. Lin, L. Li, J. Ren, et al., Sci. Rep. 3(2013) 1353.
doi: 10.1038/srep01353
T. Chen, H.S. Peng, M. Durstock, L.M. Dai, Sci. Rep. 4(2014) 3612.
X.L. Chen, H.J. Lin, P.N. Chen, et al., Adv. Mater. 26(2014) 4444-4449.
doi: 10.1002/adma.v26.26
M. Zhang, S.L. Fang, A.A. Zakhidov, et al., Science 309(2005) 1215-1219.
doi: 10.1126/science.1115311
K. Liu, Y.H. Sun, L. Chen, et al., Nano Lett. 8(2008) 700-705.
doi: 10.1021/nl0723073
J.H. Kim, K.H. Lee, L.J. Overzet, G.S. Lee, Nano Lett. 11(2011) 2611-2617.
doi: 10.1021/nl200513a
K.Z. Gao, Z.Q. Shao, X. Wang, et al., RSC Adv. 3(2013) 15058-15064.
doi: 10.1039/c3ra42050g
Q.F. Zheng, Z.Y. Cai, Z.Q. Ma, S.Q. Gong, ACS Appl. Mater. Interfaces 7(2015) 3263-3271.
doi: 10.1021/am507999s
C. Yang, C.C. Chen, Y.Y. Pan, et al., Electrochim. Acta 182(2015) 264-271.
doi: 10.1016/j.electacta.2015.09.096
A. Anson-Casaos, J.M. Gonzalez-Dominguez, E. Terrado, M.T. Martinez, Carbon 48(2010) 1480-1488.
doi: 10.1016/j.carbon.2009.12.043
M. Kaempgen, J. Ma, G. Gruner, G. Wee, S.G. Mhaisalkar, Appl. Phys. Lett. 90(2007) 264104.
doi: 10.1063/1.2749187
P.C. Chen, G.Z. Shen, S. Sukcharoenchoke, C.W. Zhou, Appl. Phys. Lett. 94(2009) 043113.
doi: 10.1063/1.3069277
J. Ge, G.H. Cheng, L.W. Chen, Nanoscale 3(2011) 3084-3088.
doi: 10.1039/c1nr10424a
P.J. King, T.M. Higgins, S. De, N. Nicoloso, J.N. Coleman, ACS Nano 6(2012) 1732-1741.
doi: 10.1021/nn204734t
R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, H.E. Unalan, ACS Appl. Mater. Interfaces 6(2014) 15434-15439.
doi: 10.1021/am504021u
L.W. Peng, Y.Y. Feng, P. Lv, et al., J. Phys. Chem. C 116(2012) 4970-4978.
doi: 10.1021/jp209180j
L.L. Liu, Z.Q. Niu, L. Zhang, et al., Adv. Mater. 26(2014) 4855-4862.
doi: 10.1002/adma.v26.28
Z.Q. Niu, L.L. Liu, L. Zhang, et al., Adv. Mater. 26(2014) 3681-3687.
doi: 10.1002/adma.v26.22
J. Cao, C. Chen, Q. Zhao, et al., Adv. Mater. 28(2016) 9629-9636.
doi: 10.1002/adma.201602262
L.L. Liu, Z.Q. Niu, L. Zhang, X.D. Chen, Small 10(2014) 2200-2214.
doi: 10.1002/smll.201400144
Z.Q. Niu, J. Chen, H.H. Hng, J. Ma, X.D. Chen, Adv. Mater. 24(2012) 4144-4150.
doi: 10.1002/adma.201200197
S.W. Luo, M.J. Yao, S. Lei, et al., Nanoscale 9(2017) 4646-4651.
doi: 10.1039/C7NR00999B
J. Cao, C. Chen, K.N. Chen, et al., J. Mater. Chem. A 5(2017) 15008-15016.
doi: 10.1039/C7TA04920J
W. Lv, Z.J. Li, Y.Q. Deng, Q.H. Yang, F.Y. Kang, Energy Storage Mater. 2(2016) 107-138.
doi: 10.1016/j.ensm.2015.10.002
S.Y. Yang, K.H. Chang, H.W. Tien, et al., J. Mater. Chem. 21(2011) 2374-2380.
doi: 10.1039/C0JM03199B
Y.F. Li, Y.Z. Liu, Y.G. Yang, M.Z. Wang, Y.F. Wen, Appl. Phys. A-Mater.108(2012) 701-707.
doi: 10.1007/s00339-012-6953-z
Y. Jin, H.Y. Chen, M.H. Chen, N. Liu, Q.W. Li, ACS Appl. Mater. Interfaces 5(2013) 3408-3416.
doi: 10.1021/am400457x
P.S. Luan, N. Zhang, W.Y. Zhou, et al., Adv. Funct. Mater. 26(2016) 8178-8184.
doi: 10.1002/adfm.201603480
K. Hata, D.N. Futaba, K. Mizuno, et al., Science 306(2004) 1362-1364.
doi: 10.1126/science.1104962
D.N. Futaba, K. Hata, T. Yamada, et al., Nat. Mater. 5(2006) 987-994.
doi: 10.1038/nmat1782
S. Yasuda, D.N. Futaba, T. Yamada, et al., ACS Nano 3(2009) 4164-4170.
doi: 10.1021/nn9007302
R.R. Wang, Q. Wu, X.H. Zhang, et al., J. Mater. Chem. A 4(2016) 12602-12608.
doi: 10.1039/C6TA03957J
L.L. Liu, Z.Q. Niu, J. Chen, Nano Res. 10(2017) 1524-1544.
doi: 10.1007/s12274-017-1448-z
Z.Q. Niu, L. Zhang, L.L. Liu, et al., Adv. Mater. 25(2013) 4035-4042.
doi: 10.1002/adma.v25.29
S.K. Kim, H.J. Koo, A. Lee, P.V. Braun, Adv. Mater. 26(2014) 5108-5112.
doi: 10.1002/adma.201401525
G. Lee, D. Kim, J. Yun, et al., Nanoscale 6(2014) 9655-9664.
doi: 10.1039/C4NR02035A
Y.Z. Yu, J. Zhang, X. Wu, Z.Q. Zhu, J. Mater. Chem. A 3(2015) 21009-21015.
doi: 10.1039/C5TA04913J
G. Lee, D. Kim, D. Kim, et al., Energy Environ. Sci. 8(2015) 1764-1774.
doi: 10.1039/C5EE00670H
Y. Lim, J. Yoon, J. Yun, et al., ACS Nano 8(2014) 11639-11650.
doi: 10.1021/nn504925s
D. Kim, G. Shin, Y.J. Kang, W. Kim, J.S. Ha, ACS Nano 7(2013) 7975-7982.
doi: 10.1021/nn403068d
D. Kim, G. Lee, D. Kim, et al., Nanoscale 8(2016) 15611-15620.
doi: 10.1039/C6NR04352F
H. Kim, J. Yoon, G. Lee, et al., ACS Appl. Mater. Interfaces 8(2016) 16016-16025.
doi: 10.1021/acsami.6b03504
J. Lin, C.G. Zhang, Z. Yan, et al., Nano Lett. 13(2013) 72-78.
doi: 10.1021/nl3034976
L.M. Sun, X.H. Wang, K. Zhang, J.P. Zou, Q. Zhang, Nano Energy 22(2016) 11-18.
doi: 10.1016/j.nanoen.2015.12.007
Y.S. Moon, D. Kim, G. Lee, et al., Carbon 81(2015) 29-37.
doi: 10.1016/j.carbon.2014.09.018
F.S. Wen, C.X. Hao, J.Y. Xiang, et al., Carbon 75(2014) 236-243.
doi: 10.1016/j.carbon.2014.03.058
L. Wen, F. Li, H.M. Cheng, Adv. Mater. 28(2016) 4306-4337.
doi: 10.1002/adma.v28.22
X.Y. Zhang, H.Z. Zhang, Z.Q. Lin, et al., Sci. China Mater. 59(2016) 475-494.
doi: 10.1007/s40843-016-5061-1
D.L. Jin, S. Chen, B. Wang, et al., J. Mater. Sci. 52(2017) 2849-2857.
doi: 10.1007/s10853-016-0576-2
W. Kim, W. Kim, Nanotechnology 27(2016) 225402.
doi: 10.1088/0957-4484/27/22/225402
D.P. Cole, A.L.M. Reddy, M.G. Hahm, et al., Adv. Energy Mater. 4(2014) 1300844.
doi: 10.1002/aenm.201300844
Y.Y. Shang, C.H. Wang, X.D. He, et al., Nano Energy 12(2015) 401-409.
doi: 10.1016/j.nanoen.2014.11.048
J. Lee, W. Kim, W. Kim, ACS Appl. Mater. Interfaces 6(2014) 13578-13586.
doi: 10.1021/am502953g
Z.Q. Niu, H.B. Dong, B.W. Zhu, et al., Adv. Mater. 25(2013) 1058-1064.
doi: 10.1002/adma.v25.7
C.J. Yu, C. Masarapu, J.P. Rong, B.Q. Wei, H.Q. Jiang, Adv. Mater. 21(2009) 4793-4797.
doi: 10.1002/adma.200901775
T.L. Gu, B.Q. Wei, J. Mater. Chem. A 4(2016) 12289-12295.
doi: 10.1039/C6TA04712B
I. Nam, S. Bae, S. Park, et al., Nano Energy 15(2015) 33-42.
doi: 10.1016/j.nanoen.2015.04.001
K.J. Kim, J.A. Lee, M.D. Lima, R.H. Baughman, S.J. Kim, RSC Adv. 6(2016) 24756-24759.
doi: 10.1039/C6RA02757A
T. Lv, Y. Yao, N. Li, T. Chen, Angew. Chem. Int. Ed. 55(2016) 9191-9195.
doi: 10.1002/anie.201603356
N. Zhang, P.S. Luan, W.Y. Zhou, et al., Nano Res. 7(2014) 1680-1690.
doi: 10.1007/s12274-014-0528-6
X. Li, T.L. Gu, B.Q. Wei, Nano Lett. 12(2012) 6366-6371.
doi: 10.1021/nl303631e
P. Xu, B. Wei, Z. Cao, et al., ACS Nano 9(2015) 6088-6096.
doi: 10.1021/acsnano.5b01244
C. Choi, J.H. Kim, H.J. Sim, et al., Adv. Energy Mater. 7(2017) 1602021.
doi: 10.1002/aenm.v7.6
Z.T. Zhang, J. Deng, X.Y. Li, et al., Adv. Mater. 27(2015) 356-362.
doi: 10.1002/adma.v27.2
C. Choi, J.M. Lee, S.H. Kim, et al., Nano Lett. 16(2016) 7677-7684.
doi: 10.1021/acs.nanolett.6b03739
X. Wang, C.Y. Yang, G.C. Wang, J. Mater. Chem. A 4(2016) 14839-14848.
doi: 10.1039/C6TA05299A
Q.Q. Tang, M.M. Chen, G.C. Wang, H. Bao, P. Saha, J. Power Sources 284(2015) 400-408.
doi: 10.1016/j.jpowsour.2015.03.059
Q.Q. Tang, W.Q. Wang, G.C. Wang, ACS Appl. Mater. Interfaces 8(2016) 27701-27709.
doi: 10.1021/acsami.6b08966
X.C. Gui, J.Q. Wei, K.L. Wang, et al., Adv. Mater. 22(2010) 617-621.
doi: 10.1002/adma.v22:5
P.X. Li, C.Y. Kong, Y.Y. Shang, et al., Nanoscale 5(2013) 8472-8479.
doi: 10.1039/c3nr01932b
P.X. Li, E.Z. Shi, Y.B. Yang, et al., Nano Res. 7(2014) 209-218.
doi: 10.1007/s12274-013-0388-5
P.X. Li, Y.B. Yang, E.Z. Shi, et al., ACS Appl. Mater. Interfaces 6(2014) 5228-5234.
doi: 10.1021/am500579c
Y. Xiao, Q. Zhang, J. Yan, et al., J. Electroanal. Chem. 684(2012) 32-37.
doi: 10.1016/j.jelechem.2012.08.024
Y.Y. Zhang, Z. Zhen, Z.L. Zhang, et al., Electrochim. Acta 157(2015) 134-141.
doi: 10.1016/j.electacta.2015.01.084
H.Y. Sun, Z. Xu, C. Gao, Adv. Mater. 25(2013) 2554-2560.
doi: 10.1002/adma.201204576
G. Nystrom, A. Marais, E. Karabulut, et al., Nat. Commun. 6(2015) 7259.
doi: 10.1038/ncomms8259
Z.Q. Niu, W.Y. Zhou, X.D. Chen, J. Chen, S.S. Xie, Adv. Mater. 27(2015) 6002-6008.
doi: 10.1002/adma.201502263
A. Chortos, J. Lim, J.W.F. To, et al., Adv. Mater. 26(2014) 4253-4259.
doi: 10.1002/adma.v26.25
M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z. Bao, Adv. Mater. 25(2013) 5997-6037.
doi: 10.1002/adma.201302240
S.H. Chae, W.J. Yu, J.J. Bae, et al., Nat. Mater. 12(2013) 403-409.
doi: 10.1038/nmat3572
C.Y. Yan, J.X. Wang, X. Wang, et al., Adv. Mater. 26(2014) 943-950.
doi: 10.1002/adma.v26.6
X. Wang, W. Tian, M.Y. Liao, Y. Bando, D. Golberg, Chem. Soc. Rev. 43(2014) 1400-1422.
doi: 10.1039/C3CS60348B
L. Donaldson, Mater. Today 16(2013) 416-416.
doi: 10.1016/j.mattod.2013.10.012
T. Sekitani, H. Nakajima, H. Maeda, et al., Nat. Mater. 8(2009) 494-499.
doi: 10.1038/nmat2459
T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9(2010) 1015-1022.
doi: 10.1038/nmat2896
Z.W. Jin, Q. Zhou, Y.H. Chen, et al., Adv. Mater. 28(2016) 3697-3702.
doi: 10.1002/adma.201600354
P. Kang, M.C. Wang, P.M. Knapp, S. Nam, Adv. Mater. 28(2016) 4639-4645.
doi: 10.1002/adma.v28.23
M.Q. Huang, M.L. Wang, C. Chen, et al., Adv. Mater. 28(2016) 3481-3485.
doi: 10.1002/adma.201506352
Q.S. Wang, J. Li, Y. Lei, et al., Adv. Mater. 28(2016) 3596-3601.
doi: 10.1002/adma.201506338
Y.R. Tao, X.C. Wu, W. Wang, J. Wang, J. Mater. Chem. C 3(2015) 1347-1353.
X. Hu, X.D. Zhang, L. Liang, et al., Adv. Funct. Mater. 24(2014) 7373-7380.
doi: 10.1002/adfm.v24.46
Y.R. Tao, X.C. Wu, W.W. Xiong, Small 10(2014) 4905-4911.
doi: 10.1002/smll.v10.23
X.B. Liu, H.J. Du, P.H. Wang, T.T. Lim, X.W. Sun, J. Mater. Chem. C 2(2014) 9536-9542.
doi: 10.1039/C4TC01585A
W. Tian, C. Zhang, T.Y. Zhai, et al., Adv. Mater. 26(2014) 3088-3093.
doi: 10.1002/adma.201305457
J. Xu, G.Z. Shen, Nano Energy 13(2015) 131-139.
doi: 10.1016/j.nanoen.2015.02.027
G. Chen, Z. Liu, B. Liang, et al., Adv. Funct. Mater. 23(2013) 2681-2690.
doi: 10.1002/adfm.v23.21
J.Y. Zhang, T. Song, Z.J. Zhang, et al., J. Mater. Chem. C 3(2015) 4402-4406.
doi: 10.1039/C4TC02712D
Q.H. Zheng, J. Huang, S.L. Cao, H.L. Gao, J. Mater. Chem. C 3(2015) 7469-7475.
H.Y. Chen, H. Liu, Z.M. Zhang, K. Hu, X.S. Fang, Adv. Mater. 28(2016) 403-433.
doi: 10.1002/adma.v28.3
J. Yoo, S. Jeong, S. Kim, J.H. Je, Adv. Mater. 27(2015) 1712-1717.
doi: 10.1002/adma.201404945
D. Kim, J. Yun, G. Lee, J.S. Ha, Nanoscale 6(2014) 12034-12041.
doi: 10.1039/C4NR04138K
X.F. Wang, B. Liu, R. Liu, et al., Angew. Chem. Int. Ed. 53(2014) 1849-1853.
doi: 10.1002/anie.201307581
D.S. Yu, K.L. Goh, Q. Zhang, et al., Adv. Mater. 26(2014) 6790-6797.
doi: 10.1002/adma.v26.39
C. Chen, J. Cao, Q.Q. Lu, et al., Adv. Funct. Mater. 27(2017) 1604639.
doi: 10.1002/adfm.v27.3
C. Chen, J. Cao, X.Y. Wang, et al., Nano Energy 42(2017) 187-194.
doi: 10.1016/j.nanoen.2017.10.056
D. Kim, K. Keum, G. Lee, et al., Nano Energy 35(2017) 199-206.
doi: 10.1016/j.nanoen.2017.03.044
N. Hui, F.L. Chai, P.P. Lin, et al., Electrochim. Acta 199(2016) 234-241.
doi: 10.1016/j.electacta.2016.03.115
T. Chen, L.B. Qiu, Z.B. Yang, et al., Angew. Chem. Int. Ed. 51(2012) 11977-11980.
doi: 10.1002/anie.201207023
Z.T. Zhang, X.L. Chen, P.N. Chen, et al., Adv. Mater. 26(2014) 466-470.
doi: 10.1002/adma.201302951
H. Sun, X. You, J. Deng, et al., Angew. Chem. Int. Ed. 53(2014) 6664-6668.
doi: 10.1002/anie.201403168
Z.B. Yang, J. Deng, H. Sun, et al., Adv. Mater. 26(2014) 7038-7042.
doi: 10.1002/adma.201401972
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Gaojie Zhu , Zhen Yang , Shijun Li , Weihua Zhu , Rui Cao , Junlong Zhang , Jianzhang Zhao , Jonathan L. Sessler , Xunjin Zhu , Jianxin Song , Yongshu Xie , Jianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167