Recent progress of unconventional and multifunctional integrated supercapacitors
- Corresponding author: Wang Hua, wanghua8651@buaa.edu.cn
Citation: Chen Mengxue, Yang Yun, Chen Dezhi, Wang Hua. Recent progress of unconventional and multifunctional integrated supercapacitors[J]. Chinese Chemical Letters, ;2018, 29(4): 564-570. doi: 10.1016/j.cclet.2017.12.019
Z. Zhu, F. Cheng, Z. Hu, Z. Niu, J. Chen, J. Power Sources 293(2015) 626-634.
doi: 10.1016/j.jpowsour.2015.05.116
X. Wang, X. Lu, B. Liu, et al., Adv. Mater. 26(2014) 4763-4782.
doi: 10.1002/adma.v26.28
D. Yu, W. Hua, Y. Jie, et al., ACS Appl. Mater. Interface 9(2017) 21298-21306.
doi: 10.1021/acsami.7b05318
H. Wang, H. Feng, J. Li, Small 10(2014) 2165-2181.
doi: 10.1002/smll.201303711
L.F. Chen, X.D. Zhang, H.W. Liang, et al., ACS Nano 6(2012) 7092-7102.
doi: 10.1021/nn302147s
S. Luo, M. Yao, S. Lei, et al., Nanoscale 9(2017) 4646-4651.
doi: 10.1039/C7NR00999B
Z.S. Wu, X. Feng, H.M. Cheng, Natl. Sci. Rev. 1(2014) 277-292.
doi: 10.1093/nsr/nwt003
Z. Niu, W. Zhou, X. Chen, J. Chen, S. Xie, Adv. Mater. 27(2015) 6002-6008.
doi: 10.1002/adma.201502263
P. Luan, N. Zhang, W. Zhou, et al., Adv. Funct. Mater. 26(2016) 8178-8184.
doi: 10.1002/adfm.201603480
B. Liu, D. Tan, X. Wang, D. Chen, G. Shen, Small 9(2013) 1998-2004.
doi: 10.1002/smll.v9.11
D. Qi, Z. Liu, Y. Liu, et al., Adv. Mater. 27(2015) 5559-5566.
doi: 10.1002/adma.201502549
P. Hu, T. Chen, Y. Yang, et al., Nanoscale 9(2017) 1423-1427.
doi: 10.1039/C6NR09190C
W. Zeng, L. Shu, Q. Li, et al., Adv. Mater. 26(2014) 5310-5336.
doi: 10.1002/adma.201400633
Z. Niu, J. Du, X. Cao, et al., Small 8(2012) 3201-3208.
doi: 10.1002/smll.v8.20
L. Peng, P. Xu, B. Liu, et al., Nano Lett. 13(2013) 2151-2157.
doi: 10.1021/nl400600x
L. Liu, Z. Niu, J. Chen, Nano Res. 10(2017) 1524-1544.
doi: 10.1007/s12274-017-1448-z
X. Wang, C. Yan, A. Sumboja, J. Yan, P.S. Lee, Adv. Energy Mater. 4(2014) 1301240.
doi: 10.1002/aenm.201301240
X. Lu, M. Yu, G. Wang, et al., Adv. Mater. 25(2013) 267-272.
doi: 10.1002/adma.201203410
Z. Niu, L. Liu, L. Zhang, et al., Adv. Energy Mater. 5(2015) 1500677.
doi: 10.1002/aenm.201500677
C. Chen, J. Cao, Q. Lu, et al., Adv. Funct. Mater. 27(2017) 1604639.
doi: 10.1002/adfm.v27.3
T. Miyasaka, T.N. Murakami, Appl. Phys. Lett. 85(2004) 3932-3934.
doi: 10.1063/1.1810630
M.F. Elkady, M. Ihns, M. Li, et al., Proc. Nalt. Acad. Sci. U. S. A. 112(2015) 4233-4238.
doi: 10.1073/pnas.1420398112
C.T. Chien, P. Hiralal, D.Y. Wang, et al., Small 11(2015) 2929-2937.
doi: 10.1002/smll.201403383
X. Wang, B. Liu, Q. Wang, et al., Adv. Mater. 25(2013) 1479-1486.
doi: 10.1002/adma.v25.10
P. Lin, L. Hu, X. Fang, Adv. Funct. Mater. 24(2014) 2591-2610.
doi: 10.1002/adfm.v24.18
Y. Yang, H. Wang, R. Hao, L. Guo, Small 12(2016) 4683-4689.
doi: 10.1002/smll.v12.34
H. Wang, B. Zhu, W. Jiang, et al., Adv. Mater. 26(2014) 3638-3643.
doi: 10.1002/adma.v26.22
H. Wang, Y. Yang, L. Guo, Adv. Energy Mater. 7(2017) 1601709.
doi: 10.1002/aenm.201601709
Z. Niu, P. Luan, Q. Shao, et al., Energy Environ. Sci. 5(2012) 8726-8733.
doi: 10.1039/c2ee22042c
J. Chang, S. Adhikari, T.H. Lee, et al., Adv. Energy Mater. 5(2015) 1500003.
doi: 10.1002/aenm.201500003
U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee, S.O. Kim, Adv. Mater. 26(2014) 615-619.
doi: 10.1002/adma.201303503
L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater. 23(2011) 3751-3769.
P. Du, X. Hu, C. Yi, et al., Adv. Funct. Mater. 25(2015) 2420-2427.
doi: 10.1002/adfm.201500335
J. Wang, L. Zhang, L. Yu, et al., Nat. Commun. 5(2014) 4921-4927.
doi: 10.1038/ncomms5921
M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9(2009) 1872-1876.
doi: 10.1021/nl8038579
G. Nyström, A. Marais, E. Karabulut, et al., Nat. Commun. 6(2015) 7259-7266.
doi: 10.1038/ncomms8259
B.Y. Lim, J. Yoon, J. Yun, et al., ACS Nano 8(2014) 11639-11650.
doi: 10.1021/nn504925s
J. Xu, H. Wu, L. Lu, et al., Adv. Funct. Mater. 24(2014) 1814.
doi: 10.1002/adfm.v24.13
D. Spanos, L. Baussá, C.P. Baron, M.A. Tørngren, Angew. Chem. Int. Ed. 53(2014) 1849-1853.
doi: 10.1002/anie.201307581
N. Kaur, M. Singh, D. Pathak, T. Wagner, J.M. Nunzi, Synth. Met. 190(2014) 20-26.
doi: 10.1016/j.synthmet.2014.01.022
L.G.H. Staaf, P. Lundgren, P. Enoksson, Nano Energy 9(2014) 128-141.
doi: 10.1016/j.nanoen.2014.06.028
J. Ren, W. Bai, G. Guan, Y. Zhang, H. Peng, Adv. Mater. 25(2013) 5965-5970.
doi: 10.1002/adma.201302498
H. Sun, X. You, J. Deng, et al., Angew. Chem. Int. Ed. 53(2014) 6664.
doi: 10.1002/anie.201403168
S. Pan, Z. Zhang, W. Weng, et al., Mater. Today 17(2014) 276-284.
doi: 10.1016/j.mattod.2014.04.024
C.Y. Hsu, H.W. Chen, K.M. Lee, C.W. Hu, K.C. Ho, J. Power Sources 195(2010) 6232-6238.
doi: 10.1016/j.jpowsour.2009.12.099
Z. Huang, Z. Zhang, X. Qi, et al., Nanoscale 8(2016) 13273.
doi: 10.1039/C6NR04020A
H.W. Chen, C.Y. Hsu, J.G. Chen, et al., J. Power Sources 195(2010) 6225-6231.
doi: 10.1016/j.jpowsour.2010.01.009
J. Cao, C. Chen, Q. Zhao, et al., Adv. Mater. 28(2016) 9629-9636.
doi: 10.1002/adma.201602262
W. Guo, X. Xue, S. Wang, C. Lin, Z.L. Wang, Nano Lett. 12(2012) 2520-2523.
doi: 10.1021/nl3007159
M. Peng, S. Hou, H. Wu, et al., J. Mater. Chem. A 2(2013) 926-932.
S. Pan, Z. Yang, H. Li, et al., J. Am. Chem. Soc. 135(2013) 10622-10625.
doi: 10.1021/ja405012w
L. Sun, X. Wang, K. Zhang, et al., Nano Energy 15(2015) 445-452.
doi: 10.1016/j.nanoen.2015.05.008
X. Wang, B. Liu, R. Liu, et al., Angew. Chem. Int. Ed. 126(2014) 1880-1884.
doi: 10.1002/ange.201307581
D. Kim, J. Yun, G. Lee, J.S. Ha, Nanoscale 6(2014) 12034-12041.
doi: 10.1039/C4NR04138K
J. Xu, G. Shen, Nano Energy 13(2015) 131-139.
doi: 10.1016/j.nanoen.2015.02.027
J. Cai, C. Lv, A. Watanabe, Nano Energy 30(2016) 790-800.
doi: 10.1016/j.nanoen.2016.09.017
C. Chen, J. Cao, Q. Lu, et al., Adv. Funct. Mater. 27(2017) 1604639.
doi: 10.1002/adfm.v27.3
M. Zhu, Y. Huang, Y. Huang, et al., Adv. Funct. Mater. 26(2016) 4481-4490.
doi: 10.1002/adfm.201601260
D. Yu, K. Goh, H. Wang, et al., Nat. Nanotechnol. 9(2014) 555-562.
doi: 10.1038/nnano.2014.93
X. Chen, H. Lin, J. Deng, et al., Adv. Mater. 26(2014) 8126-8132.
doi: 10.1002/adma.201403243
M. Yu, Y. Han, X. Cheng, et al., Adv. Mater. 27(2015) 3085-3091.
doi: 10.1002/adma.201500493
Y. Yang, D. Yu, H. Wang, L. Guo, Adv. Mater. 29(2017) 1703040.
doi: 10.1002/adma.201703040
Z. Niu, L. Zhang, L. Liu, et al., Adv. Mater. 25(2013) 4035-4042.
doi: 10.1002/adma.v25.29
Y. He, W. Chen, C. Gao, et al., Nanoscale 5(2013) 8799-8820.
doi: 10.1039/c3nr02157b
P. Yang, W. Mai, Nano Energy 8(2014) 274-290.
doi: 10.1016/j.nanoen.2014.05.022
Q. Meng, H. Wu, Y. Meng, et al., Adv. Mater. 26(2014) 4100-4106.
doi: 10.1002/adma.v26.24
P. Qiang, Z. Chen, P. Yang, et al., Nanotechnology 24(2013) 435403.
doi: 10.1088/0957-4484/24/43/435403
G.F. Cai, X. Wang, M.Q. Cui, et al., Nano Energy 12(2014) 258-267.
L. Shen, L. Du, S. Tan, et al., Chem. Commun. 52(2016) 6296-6299.
doi: 10.1039/C6CC01139J
T.G. Yun, D. Kim, Y.H. Kim, et al., Adv. Mater. 29(2017) 1606728.
doi: 10.1002/adma.201606728
Y. Zhou, Y. Zhao, J. Fang, T. Lin, RSC Adv. 6(2016) 110164-110170.
doi: 10.1039/C6RA20729D
Y. Lv, W. Du, Y. Ren, et al., Inorg. Chem. Front. 3(2016) 1119-1123.
doi: 10.1039/C6QI00114A
G. Cai, P. Darmawan, M. Cui, et al., Adv. Energy Mater. 6(2016) 1501882.
doi: 10.1002/aenm.201501882
J. Yang, H. Wang, Y. Yang, et al., Nanoscale 9(2017) 9879-9885.
doi: 10.1039/C7NR03385K
H. Guo, M.H. Yeh, Y.C. Lai, et al., ACS Nano 10(2016) 10580-10588.
doi: 10.1021/acsnano.6b06621
Z. Cai, L. Li, J. Ren, et al., J. Mater. Chem. 1(2013) 258-261.
doi: 10.1039/C2TA00274D
C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett. 10(2010) 4025-4031.
doi: 10.1021/nl1019672
S. Liu, J. Xie, H. Li, et al., J. Mater. Chem. A 2(2014) 18125-18131.
doi: 10.1039/C4TA03192J
F.R. Fan, L. Lin, G. Zhu, et al., Nano Lett. 12(2012) 3109-3114.
doi: 10.1021/nl300988z
Y. Yang, H. Zhang, Z.H. Lin, et al., ACS Nano 7(2013) 9213-9222.
doi: 10.1021/nn403838y
G. Zhu, Z.H. Lin, Q. Jing, et al., Nano Lett. 13(2013) 847-853.
doi: 10.1021/nl4001053
X. Wang, J. Zhou, J. Song, et al., Nano Lett. 6(2006) 2768-2772.
doi: 10.1021/nl061802g
S. Niu, Y. Liu, S. Wang, et al., Adv. Funct. Mater. 24(2014) 3332-3340.
doi: 10.1002/adfm.201303799
K. Wang, Q. Meng, Y. Zhang, Z. Wei, M. Miao, Adv. Mater. 25(2013) 1494-1498.
doi: 10.1002/adma.v25.10
X. Li, X. Zang, Z. Li, et al., Adv. Funct. Mater. 23(2013) 4862-4869.
S. Jung, J. Lee, T. Hyeon, M. Lee, D.H. Kim, Adv. Mater. 26(2014) 6329-6334.
doi: 10.1002/adma.201402439
W. Li, X. Xu, C. Liu, et al., Adv. Funct. Mater. 27(2017) 1702738.
doi: 10.1002/adfm.v27.39
R. Li, Y. Si, Z. Zhu, et al., Adv. Mater. 29(2017) 1700253.
doi: 10.1002/adma.201700253
H. Yan, M. Zhong, Z. Lv, P. Wan, Small 13(2017) 1701697.
doi: 10.1002/smll.v13.41
L. Xue, W. Wang, Y. Guo, G. Liu, P. Wan, Sens. Actuators B-Chem. 244(2017) 47-53.
doi: 10.1016/j.snb.2016.12.064
L. Li, C. Fu, Z. Lou, et al., Nano Energy (2017) 41(2017) 261-268.
doi: 10.1016/j.nanoen.2017.08.060
X. Chen, L. Qiu, J. Ren, et al., Adv. Mater. 25(2013) 6436-6441.
doi: 10.1002/adma.v25.44
J. Han, Y. Lin, L. Chen, et al., Adv. Sci. 2(2015) 1500067.
doi: 10.1002/advs.201500067
Z. Yu, J. Moore, J. Calderon, L. Zhai, J. Thomas, Small 11(2015) 5289-5295.
doi: 10.1002/smll.201501802
H. Wang, F. Li, B. Zhu, et al., Adv. Funct. Mater. 26(2016) 3472-3479.
doi: 10.1002/adfm.v26.20
B. Liu, B. Liu, X. Wang, et al., Adv. Mater. 26(2014) 4999-5004.
doi: 10.1002/adma.201401017
X. Xia, J. Luo, Z. Zeng, et al., Sci. Rep. 2(2012) 981.
doi: 10.1038/srep00981
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Saadullah Khattak , Hong-Tao Xu , Jianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210
Xinyu Tian , Jiaxiang Guo , Zeyi Li , Shihou Sheng , Tianyu Zhang , Xianfei Li , Chuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104