Citation: Zhang Sheng, Li Yanan, Xu Youguo, Wang Zhiyong. Recent progress in copper catalyzed asymmetric Henry reaction[J]. Chinese Chemical Letters, ;2018, 29(6): 873-883. doi: 10.1016/j.cclet.2017.10.001 shu

Recent progress in copper catalyzed asymmetric Henry reaction

  • Corresponding author: Wang Zhiyong, zwang3@ustc.edu.cn
  • Received Date: 8 June 2017
    Revised Date: 26 August 2017
    Accepted Date: 10 October 2017
    Available Online: 16 June 2017

Figures(42)

  • Henry reaction is one of the most classical reactions to construct synthetically useful product nitro alcohol, which as a privileged skeleton is widely distributed in various pharmaceuticals. This review summarizes the recent progress of copper-catalyzed asymmetric Henry reaction from 2011 to 2016. The significant progress that has been made in this area will be highlighted and some of challenges that the author believes may be hindering further progress will be revealed.
  • 加载中
    1. [1]

      (a) L. Henry, Compt. Rend. Hebd. Seances Acad. Sci. 120(1895) 1265-1267;
      (b) L. Henry, Bull. Soc. Chim. Fr. 13(1895) 999-1003.

    2. [2]

      (a) G. Rosini, The henry (nitroaldol) reaction, in: I. Trost, C. H. Fleming (Eds. ), Comprehensive Organic Synthesis, Vol. 21991, Pergamon, New York, 1991, pp. 321-340;
      (b) F. A. Luzzio, Tetrahedron 57(2001) 915-945;
      (c) N. Ono, The Nitro Group in Organic Synthesis, 2nd ed., Wiley-VCH, New York, 2001;
      (d) H. Sasai, The henry (nitroaldol) reaction, 2nd ed., in: P. Knochel, G. A. Molander (Eds. ), Comprehensive Organic Synthesis, Vol. 2, Elsevier, UK, 2014, pp. 543-570.

    3. [3]

      (a) T. Suami, H. Sasai, K. Matsuno, et al., Tetrahedron Lett. 25(1984) 4533-4536;
      (b) K. Sato, S. Akai, H. Shoji, et al., J. Org. Chem. 73(2008) 1234-1242;
      (c) P. Jakubec, D. M. Cockfield, D. J. Dixon, J. Am. Chem. Soc 131(2009) 16632-16633;
      (d) P. Jakubec, A. Hawkins, W. Felzmann, D. J. Dixon, J. Am. Chem. Soc 134(2012) 17482-17485.

    4. [4]

      H. Sasai, S. Takeyuki, T. Arai, M. Shibasaki, J. Am. Chem. Soc. 114(1992) 4418-4420.  doi: 10.1021/ja00037a068

    5. [5]

      S. Adachi, R. Moorthy, M. P. Sibi, Chiral copper Lewis acids in asymmetric transformations, in: A. Alexakis, N. Krause, S. Woodward (Eds. ), CopperCatalyzed Asymmetric Synthesis, Wiley, Weinheim, 2014, pp. 283-324.

    6. [6]

      (a) M. Shibasaki, H. Gröger, M. Kanai, Nitroaldol reaction, in: A. Jacobsen, H. Pfaltz (Eds. ), Comprehensive Asymmetric Catalysis, Springer, Heidelberg, 2004, pp. 131-133;
      (b) C. Palomo, M. Oiarbide, A. Mielgo, Angew. Chem. Int. Ed 43(2004) 5442-5444;
      (c) J. Boruwa, N. Gogoi, P. P. Saikia, N. C. Barua, Tetrahedron: Asymmetry 17(2006) 3315-3326;
      (d) C. Palomo, M. Oiarbide, A. Laso, Eur. J. Org. Chem. (2007) 2561-2574;
      (e) G. Blay, V. Hernández-Olmos, J. R. Pedro, Synlett. 9(2011) 1195-1211;
      (f) N. Ananthi, S. Velmathi, Indian J. Chem. 52 B (2013) 87-108.

    7. [7]

      (a) Reports on organocatalytic Henry reaction, see:, A. B. Shashank, D. B. Ramachary, Org. Biomol. Chem. 13(2015) 5110-5114;
      (b) P. K. Vijaya, S. Murugesan, A. Siva, Org. Biomol. Chem. 14(2016) 10101-10109;
      (c) J. Otevrel, P. Bobal, Synthesis 49(2017) 593-603.

    8. [8]

      (a) Y. L. Bennani, S. Hanessian, Chem. Rev. 97(1997) 3161-3195;
      (b) R. Matsubara, S. Kobayashi, Angew. Chem. Int. Ed. 45(2006) 7993-7995;
      (c) D. A. Evans, S. Mito, D. Seidel, J. Am. Chem. Soc. 129(2007) 11583-11592;
      (d) R. Matsubara, S. Kobayashi, Acc. Chem. Res. 41(2008) 292-301;
      (e) B. Saito, G. Fu, J. Am. Chem. Soc 130(2008) 6694-6695.

    9. [9]

      T. Arai, M. Watanabe, A. Fujiwara, N. Yokoyama, A. Yanagisawa, Angew. Chem. Int. Ed. 45(2006) 5978-5981.  doi: 10.1002/(ISSN)1521-3773

    10. [10]

      W. Jin, X.C. Li, B.S. Wan, J. Org. Chem. 76(2011) 484-491.  doi: 10.1021/jo101932a

    11. [11]

      A. Chougnet, G.Q. Zhang, K.G. Liu, et al., Adv. Synth. Catal. 353(2011) 1797-1806.  doi: 10.1002/adsc.201100157

    12. [12]

      C.H. Zhao, F. Liu, S.H. Gou, Tetrahedron:Asymmetry 25(2014) 278-283.  doi: 10.1016/j.tetasy.2013.12.017

    13. [13]

      K. Tanaka, T. Iwashita, E. Yoshida, et al., Chem. Commun. 51(2015) 7907-7910.  doi: 10.1039/C5CC02302E

    14. [14]

      K. Kodama, K. Sugawara, T. Hirose, Chem. Eur. J. 17(2011) 13584-13592.  doi: 10.1002/chem.v17.48

    15. [15]

      T. Arai, Y. Taneda, Y. Endo, Chem. Commun. 46(2010) 7936-7938.  doi: 10.1039/c0cc03022h

    16. [16]

      L. Androvic, P. Drabina, I. Panov, et al., Tetrahedron:Asymmetry 25(2014) 7759-780.
       

    17. [17]

      A. Das, M.K. Choudhary, R.I. Kureshy, et al., Tetrahedron 71(2015) 5229-5237.  doi: 10.1016/j.tet.2015.06.033

    18. [18]

      (a) M. Kitamura, S. Suga, K. Kawai, R. Noyori, J. Am. Chem. Soc. 108(1986) 6071-6072;
      (b) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994;
      (c) Z. Q. Rong, Y. Li, G. Q. Yang, S. L. You, Synlett (2011) 1033-1037;
      (d) U. Groselj, Curr. Org. Chem. 19(2015) 2048-2074.

    19. [19]

      (a) E. Blay, I. Fernández, V. Hernández-Olmos, J. R. Pedro, Tetrahedron: Asymmetry 17(2006) 2046-2049;
      (b) G. Blay, V. Hernández-Olmos, J. R. Pedro, Chem. Commun. (2008) 4840-4842;
      (c) G. Blay, V. Hernández-Olmos, J. R. Pedro, Tetrahedron: Asymmetry 21(2010) 578-581;
      (d) G. Blay, J. R. Hernández-Olmos, Pedro, Chem. Eur. J. 7(2011) 3768-3773.

    20. [20]

      (a) Y. R. Zhou, J. F. Dong, F. L. Zhang, Y. F. Gong, J. Org. Chem. 76(2011) 588-600;
      (b) D. F. Lu, Y. R. Zhou, Y. J. Li, S. B. Yan, Y. F. Gong, J. Org. Chem. 76(2011) 8869-8878;
      (c) Y. R. Zhou, Y. F. Gong, Eur. J. Org. Chem. (2011) 6092-6099;
      (d) L. H. Gu, Y. R. Zhou, J. L. Zhang, Y. F. Gong, Tetrahedron: Asymmetry 23(2012) 124-129;
      (e) H. L. Yuan, J. H. Hu, Y. F. Gong, Tetrahedron: Asymmetry 24(2013) 699-705;
      (f) Y. R. Zhou, Y. Q. Zhu, S. B. Yan, Y. F. Gong, Angew. Chem. Int. Ed. 52(2013) 10265-10269;
      (g) Y. R. Zhou, Q. Yang, J. Shen, et al., J. Org. Chem. 80(2015) 1446-1456.

    21. [21]

      S. Rossi, R. Porta, D. Brenna, A. Puglisi, M. Benaglia, Angew. Chem. Int. Ed. 56(2017) 4290-4294.  doi: 10.1002/anie.201612192

    22. [22]

      I. Panov, P. Drabina, Z. Padělková, P. Šimunek, M. Sedlák, J. Org. Chem. 76(2011) 4787-4793.  doi: 10.1021/jo200703j

    23. [23]

      G. Nováková, P. Drabina, B. Frumarová, M. Sedlák, Adv. Synth. Catal. 358(2016) 2541-2552.  doi: 10.1002/adsc.201600198

    24. [24]

      D. Scharnagel, F. Prause, J. Kaldun, R.G. Haase, M. Breuning, Chem. Commun. 50(2014) 6623-6625.  doi: 10.1039/C4CC02429J

    25. [25]

      (a) K. Ding, Z. Han, Z. Wang, Chem. Asian J. 4(2009) 32-41;
      (b) S. F. Zhu, Q. L. Zhou, Chiral spiro ligands, in: Q. L. Zhou (Ed. ), Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, 2011, pp. 137-170;
      (c) G. B. Bajracharya, J. Nepal Chem. 28(2011) 1-23.

    26. [26]

      R. Ćwiek, P. Niedziejko, Z. Kałuza, J. Org. Chem. 79(2014) 1222-1234.  doi: 10.1021/jo402631u

    27. [27]

      P. Niedziejko, M. Szewczyk, P. Kalicki, Z. Kałuza, Tetrahedron:Asymmetry 26(2015) 1083-1094.  doi: 10.1016/j.tetasy.2015.08.002

    28. [28]

      (a) G. Desimoni, G. Faita, P. Quadrelli, Chem. Rev. 103(2003) 3119-3154;
      (b) G. Desimoni, G. Faita, K. A. Jørgensen, Chem. Rev. 106(2006) 3561-3651;
      (c) L. M. Stanley, M. P. Sibi, Chiral bisoxazoline ligands, in: Q. L. Zhou (Ed. ), Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, 2011, pp. 171-219;
      (d) G. Desimoni, G. Faita, K. A. Jørgensen, Chem. Rev. 111(2011) PR284-PR437.

    29. [29]

      T.P. Yoon, E.N. Jacobsen, Science 299(2003) 1691-1693.  doi: 10.1126/science.1083622

    30. [30]

      (a) K. Christensen, K. A. Juhl, Chem. Commun. (2001) 2222-2223;
      (b) K. Christensen, R. G. Juhl, K. A. Hazell, J. Org Chem 67(2002) 4875-4881;
      (c) D. Evans, M. Seidel, et al., J. Am. Chem. Soc 125(2003) 12692-12693;
      (d) J. M. Lee, J. Kim, Y. Shin, et al., Tetrahedron: Asymmetry 21(2010) 285-291;
      (e) K. Lang, J. Park, S. Hong, J. Org. Chem. 75(2010) 6424-6435.

    31. [31]

      (a) W. Yang, H. Liu, D. M. Du, Org. Biomol. Chem. 8(2010) 2956-2960;
      (b) W. Yang, D. M. Du, Eur. J. Org. Chem. (2011) 1552-1556.

    32. [32]

      (a) B. V. S. Reddy, J. George, Tetrahedron: Asymmetry 22(2011) 1169-1175;
      (b) J. Y. Mao, X. Nie, M. Wang, et al., Tetrahedron: Asymmetry 23(2012) 965-971;
      (c) A. E. Aydin, S. Yuksekdanaci, Tetrahedron: Asymmetry 24(2013) 14-22;
      (d) E. Wolinska, Tetrahedron 69(2013) 7269-7278;
      (e) E. Wolinska, Tetrahedron: Asymmetry 25(2014) 1122-1128.

    33. [33]

      M. Holmquist, G. Blay, M.C. Munoz, J.R. Pedro, Org. Lett. 16(2014) 1204-1207.  doi: 10.1021/ol500082d

    34. [34]

      (a) Z. M. Zhou, Z. H. Li, X. Y. Hao, et al., Org. Biomol. Chem. 10(2012) 2113-2118;
      (b) Z. H. Li, Z. M. Zhou, X. Y. Hao, et al., Appl. Catal. A: Gen. 425-426(2012) 28-34;
      (c) L. W. Tang, X. Dong, Z. M. Zhou, et al., RSC Adv. 5(2015) 4758-4765.

    35. [35]

      G. Chollet, F. Rodriguez, E. Schulz, Org. Lett. 8(2006) 539-542.  doi: 10.1021/ol053036a

    36. [36]

      D. Didier, C. Magnier-Bouvier, E. Schulz, Adv. Synth. Catal. 353(2011) 1087-1095.  doi: 10.1002/adsc.201000934

    37. [37]

      R. Maggi, D. Lanari, C. Oro, G. Sartori, L. Vaccaro, Eur. J. Org. Chem. (2011) 5551-5554.
       

    38. [38]

      (a) B. Angulo, J. I. García, C. I. Herrerías, J. A. Mayoral, A. C. Minana, J. Org. Chem. 77(2012) 5525-5532;
      (b) B. Angulo, J. I. García, C. I. Herrerías, J. A. Mayoral, A. C. Miñana, Org. Biomol. Chem. 13(2015) 9314-9322.

    39. [39]

      D.P. Curran, S. Hadida, M. He, J. Org. Chem. 62(1997) 6714-6715.  doi: 10.1021/jo9710590

    40. [40]

      T. Deng, C. Cai, J. Fluorine Chem. 156(2013) 183-186.  doi: 10.1016/j.jfluchem.2013.09.014

    41. [41]

      (a) T. Aratani, Y. Yoneyoshi, T. Nagase, Tetrahedron Lett. 23(1982) 685-688;
      (b) T. Aratani, Pure Appl. Chem. 57(1985) 1839-1844.

    42. [42]

      (a) A. G. Dossetter, T. F. Jamison, E. N. Jacobsen, Angew. Chem. Int. Ed. 38(1999) 2398-2400;
      (b) D. E. Gademann, E. N. Chavez, Angew. Chem. Int. Ed. 41(2002) 3059-3061;
      (c) F. F. Guo, G. Y. Lai, S. S. Xiong, S. J. Wang, Z. Y. Wang, Chem. Eur. J. 16(2010) 6438-6441;
      (d) F. F. Guo, D. L. Chang, G. Y. Lai, Z. Y. Wang, Chem Eur. J. 17(2011) 11127-11130;
      (e) C. Li, F. F. Guo, K. Xu, Org. Lett. 16(2014) 3192-3195;
      (f) D. X. Landry, G. M. Hu, N. Z. McKenna, J. Am. Chem. Soc 138(2016) 5150-5158.

    43. [43]

      (a) C. S. Gan, G. Y. Lai, Z. H. Zhang, Z. Y. Wang, M. M. Zhou, Tetrahedron: Asymmetry 17(2006) 725-728;
      (b) G. Y. Lai, S. J. Wang, Z. Y. Wang, Tetrahedron: Asymmetry 19(2008) 1813-1819.

    44. [44]

      Y. Wei, L. Yao, B.L. Zhang, W. He, S.Y. Zhang, Tetrahedron 67(2011) 8552-8558.  doi: 10.1016/j.tet.2011.08.076

    45. [45]

      R. Boobalan, G.H. Lee, C.P. Chen, Adv. Synth. Catal. 354(2012) 2511-2520.
       

    46. [46]

      H.G. Cheng, L.Q. Lu, T. Wang, J.R. Chen, W.J. Xiao, Chem. Commun. 48(2012) 5596-5598.  doi: 10.1039/c2cc31907a

    47. [47]

      L.Y. Chen, J.R. Chen, H.G. Cheng, L.Q. Lu, W.J. Xiao, Eur. J. Org. Chem. (2014) 4714-4719.
       

    48. [48]

      (a) A. Das, R. I. Kureshy, P. S. Subramanian, et al., Catal. Sci. Technol. 4(2014) 411-418;
      (b) Q. B. Song, X. X. An, T. Xia, X. C. Zhou, T. H. Shen, C. R. Chim. 18(2015) 215-222.

    49. [49]

      (a) F. Y. He, Y. D. Ma, L. Zhao, et al., Tetrahedron: Asymmetry 23(2012) 809-817;
      (b) G. R. Qiang, T. H. Shen, X. C. Zhou, X. X. An, Q. B. Song, Chirality 26(2014) 780-783;
      (c) T. Q. Jiao, J. X. Tu, G. Q. Li, F. Xu, J. Mol. Catal. A: Chem. 416(2016) 56-62.

    50. [50]

      Y. Kogami, T. Nakajima, T. Ikeno, T. Yamada, Synthesis 12(2004) 1947-1950.
       

    51. [51]

      R.I. Kureshy, A. Das, N.H. Khan, S.H.R. Abdi, H.C. Bajaj, ACS Catal.1(2011) 1529-1535.  doi: 10.1021/cs2004467

    52. [52]

      (a) R. I. Kureshy, B. Dangi, A. Das, et al., Appl. Catal. A: Gen. 439-440(2012) 74-79;
      (b) A. Das, R. I. Kureshy, K. J. Prathap, et al., Appl. Catal. A: Gen. 459(2013) 97-105.

    53. [53]

      F. Li, Z.J. Zheng, J.Y. Shang, et al., Chem. Asian J. 7(2012) 2008-2013.  doi: 10.1002/asia.201200388

    54. [54]

      J.D. White, S. Shaw, Org. Lett. 14(2012) 6270-6273.  doi: 10.1021/ol3030023

    55. [55]

      M. Kannan, T. Punniyamurthy, Tetrahedron:Asymmetry 25(2014) 1331-1339.  doi: 10.1016/j.tetasy.2014.07.013

    56. [56]

      (a) K. Dhahagani, J. Rajesh, R. Kannan, G. Rajagopal, Tetrahedron: Asymmetry 22(2011) 857-865;
      (b) F. Ibrahim, N. Jaber, V. Guérineau, et al., Tetrahedron: Asymmetry 24(2013) 1395-1401;
      (c) K. K. Bania, G. V. Karunakar, K. Goutham, R. C. Deka, Inorg. Chem. 52(2013) 8017-8029.

    57. [57]

      (a) B. M. Trost, V. S. C. Yeh, Angew. Chem. Int. Ed. 41(2002) 861-863;
      (b) Y. W. Zhong, P. Tian, G. Q. Lin, Tetrahedron: Asymmetry 15(2004) 771-776;
      (c) M. Palomo, A. Oiarbide, Angew. Chem. Int. Ed. 44(2005) 3881-3884.

    58. [58]

      B.V.S. Reddy, S.M. Reddy, S. Manisha, C. Madan, Tetrahedron:Asymmetry 22(2011) 530-535.  doi: 10.1016/j.tetasy.2011.02.019

    59. [59]

      (a) G. Y. Lai, F. F. Guo, Y. Q. Zheng, et al., Chem. Eur. J. 17(2011) 1114-1117;
      (b) K. Xu, G. Y. Lai, Z. G. Zha, et al., Chem. Eur. J. 18(2012) 12357-12362.

    60. [60]

      Z.L. Guo, S. Zhong, Y.B. Li, G. Lu, Tetrahedron:Asymmetry 22(2011) 238-245.  doi: 10.1016/j.tetasy.2011.01.026

    61. [61]

      (a) D. D. Qin, W. H. Lai, D. Hu, et al., Chem. Eur. J. 18(2012) 10515-10518;
      (b) W. Chen, Z. H. Zhou, H. B. Chen, Org. Biomol. Chem. 15(2017) 1530-1536.

    62. [62]

      D.D. Qin, W. Yu, J.D. Zhou, et al., Chem. Eur. J. 19(2013) 16541-16544.  doi: 10.1002/chem.201303650

    63. [63]

      (a) A. E. Aydin, Appl. Organomet. Chem. 27(2013) 283-289;
      (b) F. Xu, C. Lei, L. Yan, J. X. Tu, G. Q. Li, Chirality 27(2015) 761-765.

    64. [64]

      X.J. Wang, W.X. Zhao, G.W. Li, et al., Appl. Organomet. Chem. 28(2014) 892-899.  doi: 10.1002/aoc.v28.12

    65. [65]

      X.H. Liu, L.L. Lin, X.M. Feng, Acc. Chem. Res. 44(2011) 574-587.  doi: 10.1021/ar200015s

    66. [66]

      B. Qin, X. Xiao, X.H. Liu, et al., J. Org. Chem. 72(2007) 9323-9328.  doi: 10.1021/jo701898r

    67. [67]

      H.J. Mei, X. Xiao, X.H. Zhao, et al., J. Org. Chem. 80(2015) 2272-2280.  doi: 10.1021/jo5027832

    68. [68]

      H. Maheswaran, K.L. Prasanth, G.G. Krishna, et al., Chem. Commun. (2006) 4066-4068.
       

    69. [69]

      (a) M. Breuning, D. Hein, M. Steiner, V. H. Gessner, C. Strohmann, Chem. Eur. J. 15(2009) 12764-12769;
      (b) D. Scharnagel, A. Mìller, F. Prause, et al., Chem. Eur. J. 21(2015) 12488-12500.

    70. [70]

      (a) Y. Q. Ji, G. Qi, Z. M. A. Judeh, Eur. J. Org. Chem. (2011) 4892-4898;
      (b) Y. Q. Ji, G. Qi, Z. M. A. Judeh, Tetrahedron: Asymmetry 22(2011) 929-935;
      (c) Y. Q. Ji, G. Qi, Z. M. A. Judeh, Tetrahedron: Asymmetry 22(2011) 2065-2070.

    71. [71]

      (a) S. K. Tian, Y. G. Chen, J. F. Hang, et al., Acc. Chem. Res. 37(2004) 621-631;
      (b) C. E. Song, Cinchona Alkaloids in Synthesis & Catalysis: Ligands, Immobilization and Organocatalysis, Wiley-VCH, Weinheim, 2009, pp. 105-418.

    72. [72]

      M. Zielińska-Błajet, J. Skarzewski, Tetrahedron:Asymmetry 22(2011) 351-355.  doi: 10.1016/j.tetasy.2011.02.003

    73. [73]

      (a) M. Liu, S. J. Ma, Z. Q. Tian, et al., Tetrahedron: Asymmetry 24(2013) 736-743;
      (b) L. L. Zhang, H. Wu, Z. Y. Yang, et al., Tetrahedron 69(2013) 10644-10652.

  • 加载中
    1. [1]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    2. [2]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    3. [3]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    4. [4]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    5. [5]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    6. [6]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    7. [7]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    8. [8]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    9. [9]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    12. [12]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    13. [13]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    14. [14]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    15. [15]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    16. [16]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    17. [17]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    18. [18]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    19. [19]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    20. [20]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

Metrics
  • PDF Downloads(3)
  • Abstract views(643)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return