Citation:
Song Wuqiong, Cai Juntao, Zou Xiaopeng, Wang Xiaoli, Hu Jing, Yin Jian. Applications of controlled inversion strategies in carbohydrate synthesis[J]. Chinese Chemical Letters,
;2018, 29(1): 27-34.
doi:
10.1016/j.cclet.2017.09.061
-
Carbohydrates play critical roles in mediating many biological processes, such as cell growth, migration, cell-cell adhesion, fertilization, signal transduction and immune response. The increasing demands for the study of these molecules greatly facilitate the development of carbohydrate synthesis. Inversion strategies via sulfonyl groups, selective reductions, etc. have been used to synthesize corresponding inverted configurations. This review focuses on the mechanisms of these inversion methods and their applications in constructing amino sugars, rare sugars and β-configurations in glycosylations.
-
-
-
[1]
A. Varki, Glycobiology 3(1993) 97-130. doi: 10.1093/glycob/3.2.97
-
[2]
J.B. Lowe, J.D. Marth, Annu. Rev. Biochem. 72(2003) 643-691. doi: 10.1146/annurev.biochem.72.121801.161809
-
[3]
M. Trent, C.M. Stead, A.X. Tran, et al., J. Endotoxin. Res. 12(2006) 205-223.
-
[4]
H. Sahly, Y. Keisari, E.C. Crouch, et al., Infect. Immun. 76(2008) 1322-1332. doi: 10.1128/IAI.00910-07
-
[5]
C. Weidenmaier, A. Peschel, Nat. Rev. Microbiol. 6(2008) 276-287. doi: 10.1038/nrmicro1861
-
[6]
F. Broecker, J. Hanske, C.E. Martin, et al., Nat. Commun. 7(2016) 11224. doi: 10.1038/ncomms11224
-
[7]
H. Liu, D.J. Irvine, Bioconjugate Chem. 26(2015) 791-801. doi: 10.1021/acs.bioconjchem.5b00103
-
[8]
T.J. Boltje, T. Buskas, G. Boons, Nat. Chem. 1(2009) 611-622. doi: 10.1038/nchem.399
-
[9]
R.M.F.V. Der Put, T.H. Kim, C. Guerreiro, et al., Bioconjugate Chem. 27(2016) 883-892. doi: 10.1021/acs.bioconjchem.5b00617
-
[10]
M.A. Monteiro, Z. Ma, L. Bertolo, et al., Expert. Rev. Vaccines 12(2014) 421-431.
-
[11]
C.E. Martin, M. Weishaupt, P.H. Seeberger, Chem. Commun. 47(2011) 10260-10262. doi: 10.1039/c1cc13614c
-
[12]
(a) H. Dong, Efficient Carbohydrate Synthesis by Controlled Inversion Strategies, Licentaite Thesis, Kungliga Tekniska högskolan (Royal Institute of Technology), 2006;
(b) H. Dong, Efficient Carbohydrate Synthesis by Intra-and Supramolecular Control, Doctoral Thesis, Kungliga Tekniska högskolan (Royal Institute of Technology), 2008. -
[13]
K.J. Hale, L. Hough, S. Manaviazar, et al., Org. Lett. 16(2014) 4838-4841. doi: 10.1021/ol502193j
-
[14]
A.C. Richardson, Carbohydr. Res. 10(1969) 395-402. doi: 10.1016/S0008-6215(00)80900-3
-
[15]
R. Lattrell, G. Lohaus, Liebigs Ann. Chem. 1974(1974) 901-920. doi: 10.1002/(ISSN)1099-0690
-
[16]
R. Albert, K. Dax, R.W. Link, et al., Carbohydr. Res. 118(1983) C5-C6. doi: 10.1016/0008-6215(83)88062-8
-
[17]
H. Dong, Zhichao Pei, O. Ramström, J. Org. Chem. 71(2006) 3306-3309. doi: 10.1021/jo052662i
-
[18]
S. Knapp, A.B. Naughton, C. Jaramillo, et al., J. Org. Chem. 57(1992) 7328-7334. doi: 10.1021/jo00052a058
-
[19]
G. Dijkstra, W. Kruizinga, R.M. Kellogg, J. Org. Chem. 52(1987) 4230-4234. doi: 10.1021/jo00228a015
-
[20]
M. Miljković, Nucleophilic Displacement and the Neighboring Group Participation, Carbohydrates, Springer, New York, 2010, pp. 169-190.
-
[21]
H. Dong, M. Rahm, N. Thota, et al., Org. Biomol. Chem. 11(2013) 648-653. doi: 10.1039/C2OB26980E
-
[22]
H. Dong, Z.C. Pei, M. Angelin, et al., J. Org. Chem. 72(2007) 3694-3701. doi: 10.1021/jo062643o
-
[23]
Z.C. Pei, H. Dong, R. Caraballo, et al., Eur. J. Org. Chem. (2007) 4927-4934.
-
[24]
D.S. Noyce, J.A. Virgilio, J. Org. Chem. 37(1972) 2643-2647. doi: 10.1021/jo00982a001
-
[25]
H. Ochiai, T. Niwa, T. Hosoya, Org. Lett. 18(2016) 5982. doi: 10.1021/acs.orglett.6b02675
-
[26]
R.W. Binkley, J. Org. Chem. 56(1991) 3892-3896. doi: 10.1021/jo00012a020
-
[27]
D.R. Dalton, R.C.S. Jr, D.G. Jones, Tetrahedron 26(1970) 575-581. doi: 10.1016/S0040-4020(01)97850-0
-
[28]
J. Muzart, Tetrahedron 65(2009) 8313-8323. doi: 10.1016/j.tet.2009.06.091
-
[29]
Y. Cai, C.C. Ling, D.R. Bundle, J. Org. Chem. 74(2009) 580-589. doi: 10.1021/jo801927k
-
[30]
G.W.J. Fleet, M.J. Gough, T.K.M. Shing, Tetrahedron Lett. 25(1984) 4029-4032. doi: 10.1016/0040-4039(84)80058-1
-
[31]
J. Vesely, A. Rohlenova, M. Dzoganova, et al., Synthesis (2006) 699-705.
-
[32]
A. Banerjee, S.K. Ghosh, Mol. Cell. Biochem. 253(2003) 179-190. doi: 10.1023/A:1026058311857
-
[33]
G.A. Ellestad, D.B. Cosulich, R.W. Broschard, et al., J. Am. Chem. Soc.100(1978) 2515-2524. doi: 10.1021/ja00476a041
-
[34]
D. Leonori, P.H. Seeberger, Org. Lett. 14(2012) 4954-4957. doi: 10.1021/ol3023227
-
[35]
C.T. Oberg, A. Noresson, T. Delaine, et al., Carbohydr. Res. 344(2009) 1282-1284. doi: 10.1016/j.carres.2009.05.005
-
[36]
B. Dhakal, S. Buda, D. Crich, J. Org. Chem. 81(2016) 10617-10630. doi: 10.1021/acs.joc.6b02221
-
[37]
S.R. Sanapala, S.S. Kulkarni, J. Am. Chem. Soc. 138(2016) 4938-4947. doi: 10.1021/jacs.6b01823
-
[38]
E.S.H.E. Ashry, N. Rashed, E.S.I. Ibrahim, Curr. Org. Synth. 37(2006) 175-213.
-
[39]
W. Günther, H. Kunz, Carbohydr. Res. 228(1992) 217. doi: 10.1016/S0008-6215(00)90561-5
-
[40]
M. Miljković, M. Gligorijević, D. Glisin, J. Org. Chem. 39(1974) 3223-3226. doi: 10.1021/jo00936a009
-
[41]
M.A. Oberli, P. Bindschädler, D.B. Werz, et al., Org. Lett. 10(2008) 905-908. doi: 10.1021/ol7030262
-
[42]
E. Danieli, D. Proietti, G. Brogioni, et al., Bioorg. Med. Chem. 20(2012) 6403-6415. doi: 10.1016/j.bmc.2012.08.048
-
[43]
S. David, A. Malleron, C. Dini, Carbohydr. Res. 188(1989) 193-200. doi: 10.1016/0008-6215(89)84070-4
-
[44]
K. Beerens, T. Desmet, W. Soetaert, J. Ind. Microbiol. Biotechnol. 39(2012) 823-834. doi: 10.1007/s10295-012-1089-x
-
[45]
S.A. Longwell, D.H. Dube, Curr. Opin. Chem. Biol. 17(2013) 41. doi: 10.1016/j.cbpa.2012.12.006
-
[46]
D.H. Dube, K. Champasa, B. Wang, Chem. Commun. 47(2011) 87. doi: 10.1039/C0CC01557A
-
[47]
A. Adibekian, P. Stallforth, M.L. Hecht, et al., Chem. Sci. 2(2010) 337-344.
-
[48]
L. Kenne, B. Lindberg, K. Petersson, et al., Carbohydr. Res. 78(1980) 119-126. doi: 10.1016/S0008-6215(00)83665-4
-
[49]
H. Baumann, A.O. Tzianabos, J.R. Brisson, et al., Biochemistry 31(1992) 4081-4089. doi: 10.1021/bi00131a026
-
[50]
A. Chaudhury, R. Ghosh, Org. Biomol. Chem. (2017) 1444-1452.
-
[51]
M. Emmadi, S.S. Kulkarni, Nat. Prod. Rep. 31(2014) 870-879. doi: 10.1039/C4NP00003J
-
[52]
L. Morelli, L. Poletti, L. Lay, Eur. J. Org. Chem. (2011) 5723-5777.
-
[53]
A. Fernández-Tejada, F.J. Cañada, J. Jiménez-Barbero, Chem. Eur. J. 21(2015) 10616-10628. doi: 10.1002/chem.v21.30
-
[54]
P.H. Seeberger, D.B. Werz, Nature 446(2007) 1046-1051. doi: 10.1038/nature05819
-
[55]
R. Pragani, P.H. Seeberger, J. Am. Chem. Soc. 133(2011) 102-107. doi: 10.1021/ja1087375
-
[56]
S. Matsuda, T. Yamanoi, M. Watanabe, Tetrahedron 64(2008) 8082-8088. doi: 10.1016/j.tet.2008.06.068
-
[57]
S.Y. Luo, S.S. Kulkarni, C.H. Chou, et al., J. Org Chem. 71(2006) 1226-1229. doi: 10.1021/jo051518u
-
[58]
W. Karpiesiuk, A. Banaszek, A. Zamojski, Carbohydr. Res. 186(1989) 156-162. doi: 10.1016/0008-6215(89)84013-3
-
[59]
L.H.B. Baptistella, A.J. Marsaioli, P.M. Imamura, et al., Carbohydr. Res. 152(1986) 310-315. doi: 10.1016/S0008-6215(00)90313-6
-
[60]
T. Haradahira, M. Maeda, Y. Yano, et al., Chem. Pharm. Bull. 32(1984) 3317-3319. doi: 10.1248/cpb.32.3317
-
[61]
I. Cumpstey, C. Ramstadius, T. Akhtar, et al., Eur. J. Org. Chem. (2010) 1951-1970.
-
[62]
I. Cumpstey, D.S. Alonzi, T.D. Butters, Carbohydr. Res. 344(2009) 454-459. doi: 10.1016/j.carres.2008.12.023
-
[63]
A. Noel, B. Delpech, D. Crich, Organ. Lett. 14(2012) 4138-4141. doi: 10.1021/ol301779e
-
[64]
C.T. Chang, Y. Hui, B. Elchert, Tetrahedron Lett. 42(2001) 7019-7023. doi: 10.1016/S0040-4039(01)01472-1
-
[65]
T.G. Frihed, C.M. Pedersen, M. Bols, Eur. J. Org. Chem. (2014) 7924-7939.
-
[66]
D.J. Cram, K.R. Kopecky, J. Am. Chem. Soc. 81(1959) 2748-2755. doi: 10.1021/ja01520a036
-
[67]
F.W. Lichtenthaler, T. Schneideradams, J. Org. Chem. 59(1994) 6728-6734. doi: 10.1021/jo00101a035
-
[68]
A. Mengel, O. Reiser, Chem. Rev. 99(1999) 1191-1224. doi: 10.1021/cr980379w
-
[69]
H.C. Brown, S. Krishnamurthy, J. Am. Chem. Soc. 94(1972) 7159-7161. doi: 10.1021/ja00775a053
-
[70]
M.R. Dhawale, W.A. Szarek, G.W. Hay, et al., Carbohydr. Res. 155(1986) 262-265. doi: 10.1016/S0008-6215(00)90156-3
-
[71]
K. Chung, R.M. Waymouth, ACS Catal. 6(2016) 4653-4659. doi: 10.1021/acscatal.6b01501
-
[72]
V.R. Jumde, N.N. Eisink, M.D. Witte, et al., J. Org. Chem. 81(2016) 11439-11443. doi: 10.1021/acs.joc.6b02074
-
[73]
E.S.H.E. Ashry, N. Rashed, E.S.I. Ibrahim, Tetrahedron 64(2008) 10631-10648. doi: 10.1016/j.tet.2008.09.001
-
[74]
F.W. Lichtenthaler, T. Metz, Eur. J. Org. Chem. (2003) 3081-3093.
-
[75]
O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 40(1967) 2380-2382. doi: 10.1246/bcsj.40.2380
-
[76]
O. Mitsunobu, M. Yamada, T. Mukaiyama, Bull. Chem. Soc. Jpn. 40(1967) 935-939. doi: 10.1246/bcsj.40.935
-
[77]
K.C.K. Swamy, N.N.B. Kumar, E. Balaraman, et al., Chem. Rev.109(2009) 2551-2651. doi: 10.1021/cr800278z
-
[78]
S. Fletcher, Org. Chem. Front. 2(2015) 739-752. doi: 10.1039/C5QO00016E
-
[79]
B.K. Shull, T. Sakai, J.B. Nichols, et al., J. Org. Chem. 62(1997) 8294-8303. doi: 10.1021/jo9615155
-
[80]
C.A. Hoeger, A.D. Johnston, W.H. Okamura, J. Am. Chem. Soc.109(1987) 4690-4698. doi: 10.1021/ja00249a035
-
[81]
G. Wang, J.R. Ella-Menye, M.M. St, et al., Org. Lett. 10(2008) 4203-4206. doi: 10.1021/ol801316f
-
[82]
C. Limousin, A. Olesker, J. Cléophax, et al., Carbohydr. Res. 312(1998) 23-31. doi: 10.1016/S0008-6215(98)00224-9
-
[83]
A.C. Simao, A. Tatibouet, A.P. Rauter, et al., Tetrahedron Lett. 51(2010) 4602-4604. doi: 10.1016/j.tetlet.2010.06.107
-
[84]
T.G. Frihed, M. Bols, C.M. Pedersen, Chem. Rev. 115(2015) 3615-3676. doi: 10.1021/acs.chemrev.5b00104
-
[85]
C.W.T. Chang, T. Clark, M. Ngaara, Tetrahedron Lett. 42(2001) 6797-6801. doi: 10.1016/S0040-4039(01)01402-2
-
[86]
R. Miethchen, D. Rentsch, M. Michalik, Eur. J. Org. Chem. (1994) 219-222.
-
[87]
M. Frank, R. Miethchen, H. Reinke, Eur. J. Org. Chem. (1999) 1259-1263.
-
[88]
R. Miethchen, D. Rentsch, M. Frank, J. Carbohydr. Chem. 15(1996) 15-31. doi: 10.1080/07328309608005421
-
[89]
C. Hager, R. Miethchen, H. Reinke, Synthesis (2000) 226-232.
-
[90]
R. Miethchen, M.L.A. Frank, D. Rentsch, Carbohydr. Res. 281(1996) 61-68. doi: 10.1016/0008-6215(95)00338-X
-
[91]
D. Rentsch, R. Miethchen, Carbohydr. Res. 239(1996) 139-145.
-
[92]
M. Frank, R. Miethchen, D. Degenring, Carbohydr. Res. 318(1999) 167-170. doi: 10.1016/S0008-6215(99)00090-7
- [93]
-
[94]
S. Van Overtveldt, T. Verhaeghe, H. Joosten, et al., Biotechnol. Adv. 33(2015) 1814-1828. doi: 10.1016/j.biotechadv.2015.10.010
-
[95]
J. Samuel, M.E. Tanner, Nat. Prod. Rep. 19(2002) 261-277. doi: 10.1039/b100492l
-
[96]
S.-M. Shin, J.M. Choi, E.d. Luccio, et al., Arch. Biochem. Biophys. 585(2015) 39-51. doi: 10.1016/j.abb.2015.08.025
-
[97]
K. Beerens, W. Soetaert, T. Desmet, Carbohydr. Res. 414(2015) 8-14. doi: 10.1016/j.carres.2015.06.006
-
[98]
L. Zhang, M.M. Muthana, H. Yu, et al., Carbohydr. Res. 419(2016) 18-28. doi: 10.1016/j.carres.2015.10.016
-
[99]
K. Kim, H. Kim, D. Oh, et al., J. Mol. Biol. 361(2006) 920-931. doi: 10.1016/j.jmb.2006.06.069
-
[100]
H. Yoshida, M. Yamada, T. Nishitani, et al., J. Mol. Biol. 374(2007) 443-453. doi: 10.1016/j.jmb.2007.09.033
-
[101]
M. Krewinkel, J. Kaiser, M. Merz, et al., J. Dairy Sci. 98(2015) 3665-3678. doi: 10.3168/jds.2015-9411
-
[102]
J. Watanabe, M. Nishimukai, H. Taguchi, et al., J. Dairy Sci. 91(2008) 4518-4526. doi: 10.3168/jds.2008-1367
-
[103]
M.L. Sanz, G.R. Gibson, R.A. Rastall, J. Agric. Food Chem. 53(2005) 5192-5199. doi: 10.1021/jf050276w
-
[104]
Z. Li, Y. Gao, H. Nakanishi, et al., Beilstein J. Org. Chem. 9(2013) 2434-2445. doi: 10.3762/bjoc.9.281
-
[105]
R. Woodyer, T.N. Christ, K.A. Deweese, Carbohydr. Res. 345(2010) 363-368. doi: 10.1016/j.carres.2009.11.023
-
[106]
D. Rao, P. Gullapalli, A. Yoshihara, et al., J. Biosci. Bioeng. 106(2008) 473-480. doi: 10.1263/jbb.106.473
-
[107]
K. Inoue, M. Nishimoto, M. Kitaoka, Carbohydr. Res. 346(2011) 2432-2436. doi: 10.1016/j.carres.2011.08.032
-
[108]
M. Nishimoto, M. Kitaoka, Carbohydr. Res. 344(2009) 2573-2576. doi: 10.1016/j.carres.2009.09.031
-
[109]
W.K. Chou, S. Hinderlich, W. Reutter, et al., J. Am. Chem. Soc.125(2003) 2455-2461. doi: 10.1021/ja021309g
-
[110]
H. Itoh, H. Okaya, A.R. Khan, et al., Biosci. Biotechnol. Biochem. 58(1994) 2168-2171. doi: 10.1271/bbb.58.2168
-
[111]
K. Izumori, A.R. Khan, H. Okaya, et al., Biosci. Biotechnol. Biochem. 57(1993) 1037-1039. doi: 10.1271/bbb.57.1037
-
[112]
J.B. Thoden, P.A. Frey, H.M. Holden, Protein Sci. 5(1996) 2149-2161. doi: 10.1002/pro.v5:11
-
[113]
P.A. Frey, A.D. Hegeman, Acc. Chem. Res. 46(2013) 1417-1426. doi: 10.1021/ar300246k
-
[114]
T.R. Tyler, J.M. Leatherwood, Arch. Biochem. Biophys. 119(1967) 363-367. doi: 10.1016/0003-9861(67)90466-3
-
[1]
-
-
-
[1]
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
-
[2]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[3]
Ke Zhang , Sheng Zuo , Pengyuan You , Tong Ru , Fen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157
-
[4]
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
-
[5]
Shuheng Zhang , Yuanyuan Zhang , Wanyu Wang , Yuzhu Hu , Xinchuan Chen , Bilan Wang , Xiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658
-
[6]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[7]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[8]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
-
[9]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[10]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[11]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[12]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[13]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[14]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[15]
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
-
[16]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[17]
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
-
[18]
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
-
[19]
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
-
[20]
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(692)
- HTML views(27)