Rapid development in two-dimensional layered perovskite materials and their application in solar cells
- Corresponding author: Guo Xin, guoxin@dicp.ac.cn
Citation: Ahmad Sajjad, Guo Xin. Rapid development in two-dimensional layered perovskite materials and their application in solar cells[J]. Chinese Chemical Letters, ;2018, 29(5): 657-663. doi: 10.1016/j.cclet.2017.08.057
T. Miyasaka, A. Kojima, K. Teshima, Y. Shirai, J. Am. Chem. Soc.131(2009) 6050-6051.
doi: 10.1021/ja809598r
J.F. Liao, H.S. Rao, B.X. Chen, D.B. Kuang, C.Y. Su, J. Mater. Chem. A 5(2016) 2066-2072.
F. Ullah, H. Chen, C. Li, Chin. Chem. Lett. 28(2017) 503-511.
doi: 10.1016/j.cclet.2016.11.009
W. Jiang, J. Ying, W. Zhou, et al., Chem. Phys. Lett. 658(2016) 71-75.
doi: 10.1016/j.cplett.2016.05.054
M. Yuan, L.N. Quan, R. Comin, et al., Nat. Nanotechnol. 11(2016) 872-877.
doi: 10.1038/nnano.2016.110
K.T. Cho, S. Paek, G. Grancini, et al., Energy Environ. Sci. 10(2017) 621-627.
doi: 10.1039/C6EE03182J
M. Pandey, K.W. Jacobsen, K.S. Thygesen, J. Phys. Chem. Lett. 7(2016) 4346-4352.
doi: 10.1021/acs.jpclett.6b01998
M. Saliba, T. Matsui, K. Domanski, et al., Science 354(2016) 206-209.
doi: 10.1126/science.aah5557
H. Kim, J. Seo, N. Park, ChemSusChem 9(2016) 2528-2540.
doi: 10.1002/cssc.201600915
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Nano Lett. 13(2013) 1764-1769.
doi: 10.1021/nl400349b
S. Yang, W. Fu, Z. Zhang, H. Chen, C.Z. Li, J. Mater. Chem. A 5(2017) 11462-11482.
doi: 10.1039/C7TA00366H
Y. Zhang, M. Liu, G.E. Eperon, et al., Mater. Horiz. 2(2015) 315-322.
doi: 10.1039/C4MH00238E
X. Li, M.I. Dar, C. Yi, et al., Nat. Chem. 7(2015) 703-711.
doi: 10.1038/nchem.2324
J. You, L. Meng, T.B. Song, et al., Nat. Nanotechnol. 11(2015) 75-81.
doi: 10.1038/nnano.2015.230
K. Aitola, K. Domanski, J.P. Correa-Baena, et al., Adv. Mater. 29(2017) 1606398.
doi: 10.1002/adma.v29.17
S.N. Habisreutinger, T. Leijtens, G.E. Eperon, et al., Nano Lett. 14(2014) 5561-5568.
doi: 10.1021/nl501982b
F. Bella, G. Griffini, J.P. Correa-Baena, et al., Science 354(2016) 203-206.
doi: 10.1126/science.aah4046
I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, Angew. Chem. Int. Ed. 126(2014) 11414-11417.
doi: 10.1002/ange.201406466
H. Tsai, W. Nie, J.C. Blancon, et al., Nature 536(2016) 312-316.
doi: 10.1038/nature18306
D. B. Mizi, Synthesis, Structure, and Properties of Organic-inorganic Perovskites and Related Materials, John Wiley and Sons, Inc, New York, 2007, pp. 1-121.
J. Chen, L. Gan, F. Zhuge, et al., Angew. Chem. Int. Ed. 129(2017) 2430-2434.
doi: 10.1002/ange.201611794
K. Chondroudis, C.R. Kagan, IBM J. Res. Dev. 45(2001) 29-45.
doi: 10.1147/rd.451.0029
S. Kishimoto, K. Shibuya, F. Nishikido, et al., Appl. Phys. Lett. 93(2008) 261901.
doi: 10.1063/1.3059562
M. Era, S. Morimoto, T. Tsutsui, S. Saito, Appl. Phys. Lett. 65(1994) 676-678.
doi: 10.1063/1.112265
K. Pradeesh, J.J. Baumberg, G.V. Prakash, Opt. Express 17(2009) 22171-22178.
doi: 10.1364/OE.17.022171
G. Lanty, J.S. Lauret, E. Deleporte, S. Bouchoule, X. Lafosse, Appl. Phys. Lett. 93(2008) 81101.
doi: 10.1063/1.2971206
L. Pedesseau, D. Sapori, B. Traore, et al., ACS Nano. 10(2016) 9776-9786.
doi: 10.1021/acsnano.6b05944
M. Pandey, K.W. Jacobsen, K.S. Thygesen, J. Phys. Chem. Lett. 7(2016) 4346-4352.
doi: 10.1021/acs.jpclett.6b01998
B.V. Beznosikov, K.S. Aleksandrov, Crystallogr. Reports 45(2000) 792-798.
doi: 10.1134/1.1312923
S.N. Ruddlesden, P. Popper, Acta Crystallogr. 11(1958) 54-55.
doi: 10.1107/S0365110X58000128
Z. Cheng, J. Lin, CrystEngComm 12(2010) 2646-2662.
doi: 10.1039/c001929a
D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, Nature 369(1994) 467-469.
doi: 10.1038/369467a0
X. Hong, T. Ishihara, A.V. Nurmikko, Phys. Rev. B 45(1992) 6961-6964.
doi: 10.1103/PhysRevB.45.6961
D.B. Mitzi, S. Wang, C.A. Feild, C.A. Chess, A.M. Guloy, Science 267(1995) 1473-1476.
doi: 10.1126/science.267.5203.1473
R.L. Milot, R.J. Sutton, G.E. Eperon, et al., Nano Lett. 16(2016) 7001-7007.
doi: 10.1021/acs.nanolett.6b03114
X. Hong, T. Ishihara, A.V. Nurmikko, Phys. Rev. B. 45(1992) 6961-6964.
doi: 10.1103/PhysRevB.45.6961
D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, J. Am. Chem. Soc. 137(2015) 7843-7850.
doi: 10.1021/jacs.5b03796
L. Mao, H. Tsai, W. Nie, et al., Chem. Mater. 28(2016) 7781-7792.
doi: 10.1021/acs.chemmater.6b03054
S.K. Abdel-Aal, A.S. Abdel-Rahman, J. Cryst. Growth 457(2017) 282-288.
doi: 10.1016/j.jcrysgro.2016.08.006
W. Jiang, J. Ying, W. Zhou, et al., Chem. Phys. Lett. 658(2016) 71-75.
doi: 10.1016/j.cplett.2016.05.054
M. Safdari, P.H. Svensson, M.T. Hoang, et al., J. Mater. Chem. A 4(2016) 15638-15646.
doi: 10.1039/C6TA05055G
E.R. Dohner, A. Jaffe, L.R. Bradshaw, H.I. Karunadasa, J. Am. Chem. Soc. 136(2014) 13154-13157.
doi: 10.1021/ja507086b
S. Sourisseau, N. Louvain, W. Bi, et al., Chem. Mater. 19(2007) 600-607.
doi: 10.1021/cm062380e
H. Hu, T. Salim, B. Chen, Y.M. Lam, Sci. Rep. 6(2016) 33546.
doi: 10.1038/srep33546
E.R. Dohner, A. Jaffe, L.R. Bradshaw, H.I. Karunadasa, J. Am. Chem. Soc. 136(2014) 13154-13157.
doi: 10.1021/ja507086b
N. Mercier, A. Riou, Chem. Commun. 33(2004) 844-845.
K. Yao, X. Wang, Y.X. Xu, F. Li, L. Zhou, Chem. Mater. 28(2016) 3131-3138.
doi: 10.1021/acs.chemmater.6b00711
D.B. Mitzi, J. Mater. Chem. 14(2004) 2355-2365.
doi: 10.1039/b403482a
T.M. Koh, V. Shanmugam, J. Schlipf, et al., Adv. Mater 28(2016) 3653-3661.
doi: 10.1002/adma.201506141
C.C. Stoumpos, C.M.M. Soe, H. Tsai, et al., Chem. 2(2017) 427-440.
doi: 10.1016/j.chempr.2017.02.004
Z. Shi, J. Guo, Y. Chen, et al., Adv. Mater. 29(2017) 1605005.
doi: 10.1002/adma.201605005
P. Patnaik, Handbook of Inorganic Chemicals, McGraw-Hill, New York (2003).
Y. Liao, H. Liu, W. Zhou, et al., J. Am. Chem. Soc. 139(2017) 6693-6699.
doi: 10.1021/jacs.7b01815
D.H. Cao, C.C. Stoumpos, T. Yokoyama, et al., ACS Energy Lett. (2017) 982-990.
M. Safdari, D. Phuyal, B. Philippe, et al., J. Mater. Chem. A 5(2017) 11730-11738.
doi: 10.1039/C6TA10123B
G. Grancini, C. Roldán-Carmona, I. Zimmermann, et al., Nat. Commun. 8(2017) 15684.
doi: 10.1038/ncomms15684
B. Cohen, M. Wierzbowska, L. Etgar, Adv. Funct. Mater. 27(2017) 1604733.
doi: 10.1002/adfm.v27.5
Y. Chen, Y. Sun, J. Peng, et al., Adv. Energy Mater. 7(2017) 1700162.
doi: 10.1002/aenm.201700162
R. Hamagu chi, M. Yoshizawa-Fujita, T. Miyasaka, et al., Chem. Commun. 53(2017) 4366-4369.
doi: 10.1039/C7CC00921F
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Hongmei Yu , Baoxi Zhang , Meiju Liu , Cheng Xing , Guorong He , Li Zhang , Ningbo Gong , Yang Lu , Guanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756